PHYS 551 Computational Methods of Physics 217
Chapter 13 Programming in style

Frogramming in style

Since this book is about using a computer to accomplish useful work in the numeric-intensive areas
of science, engineering and modern finance, the reader might be tempted to skip a chapter dealing
primarily with issues of programming style. In my graduate student days I would have been so tempted
myself. Sad experience has taught me the value of doing things right the first time, even though it
means taking some extra time and trouble.

To make the presentation as painless as possible I have compiled some programming precepts that—if
followed conscientiously—will lead to programs that work correctly and can be exhibited proudly to
one’s peers. These ideas apply to any programming language, from pure assembly code to the most
abstract or arcane. I will illustrate with examples from Fortran, C and Forth.

1. Elementary considerations

Although personal computers have gotten so fast and cheap' that we rarely worry about program
efficiency, anyone crunching numbers in a scientific or engineering context must worry to some extent
about speed. Of course if the program gives wrong answers it does not matter how fast it produced
them, so we will discuss matters pertaining to program correctness in Section below.

The main key to speed is using the right algorithm. Some algorithms are much faster than others. For
example sorting a random list can be performed in O(n logn) time using Quicksort, Heapsort or
Mergesort. For a long list this can be orders of magnitude faster than O(nz) algorithms like bubblesort
or insertion sort. Therefore a little study of the literature before writing the program can save a great
deal of time in the long run.

An example of the difference between bad and good algorithms is the evaluation of a polynomial:

" BASIC subroutine to evaluate a polynomal with real coefficients A(l)
FUNCTI ON POLY(X, A N

DIM A(N)
SUM = 0.
FORI =0 TON
SUM = SUM + A(1)*XAl
NEXT
POLY = SUM
RETURN
END
1. ...for example, I own an (obsolete) HP200LX palmtop computer that runs 10 to 100 times faster, and

has 20 times the memory, of the multimillion dollar, room-sized IBM 7094 mainframe I used for my
PhD thesis work. My desktop is thousands of times faster.

216 Readability

This is a poor routine for a number of reasons. First, to evaluate X*| (X raised to the | 'th power)
requires—depending on the compiler—either a logarithm, a multiplication and an exponentiation
(that is, two transcendental functions and a multiplication); or else | - 1 floating point multiplica-
tions. Thus even for a compiler that treats raising to integer powers as a special case, evaluating an
Nth order polynomial takes about N*/2 multiplications. There is a faster way to raise numbers to
integer powers, that requires about log, (N) multiplications, so the polynomial evaluation time, if the

compiler is smart enough to use the fast power method is O(N Oog, N). However, Horner’s method

requires O(IN) multiplications, is only a slight modification of the inefficient algorithm, and should
therefore be used as a matter of course:

" BASI C subroutine to evaluate a polynomal with real coefficients A(l)
' using Horner’'s nethod
FUNCTI ON POLY(X, A, N)

DI M A(N)

SUM = A(N) * X

FOR| = N1 TOO STEP -1
SUM = (SUM + A(1)) * X

NEXT

POLY = SUM

RETURN

END

Other instances where good algorithms make a huge difference in execution speed are sorting and

searching, where the wrong algorithm can be O(N?) and the right one O(N) or O(N log, N).

2. Readability

Readability, Testability, Safety and Maintainability are the attributes of a good computer program.
Of course, it should also be correct!—but we are here comparing programs that are algorithmically
correct, yet which exhibit the above qualities to varying degrees.

First consider readability. Every language2 permits the construction of “write-only” code, that once
written can be deciphered only with enormous effort. In the worst cases, neither the code’s own
author nor his personal deity can disencrypt the work after the heat of composition has passed.
Hallmarks of write-only code are

* missing or inadequate documentation and commenting;

* cryptic, too-terse, undescriptive names for data structures and functions;

2. Forth is commonly accused of this sin more often than other languages; and indeed some Forth legacy
code deserves the epithet; however [have seen plenty of Lisp, C, Awk and Perl codes that are at least
as terrifying. I will illustrate with some bad Fortran and Forth.

PHYS 551 Computational Methods of Physics 219
Chapter 13 Programming in style

 convoluted program organization—deeply nested, incorrectly nested or poorly chosen control
structures;

* bad factorization (more about this later);
 prolix (i.e., too long) subroutines;

 inappropriate data structures.

Documenting and commenting

When one is intent on solving a computational problem and really only cares about the answer, it is
easy to convince oneself that documenting and commenting are of secondary, or even tertiary
importance. In such circumstances one thinks, “This is just throwaway code that I'll never look at
again, so...” Sad experience teaches that it is exactly this morsel of “throwaway” code—and the
accompanying computer output—that one will have to consult in six months or a year because
something has changed, because someone has questioned the results, or because we need it for the
basis of something new.

To see this problem in action, consider the (uncommented) Fortran function

| NTEGER FUNCTI ON STI B(N, K)
STI B=0
DO 10 I=1,K
NP=N/ 2
STI B=N#+2* (STI B- NP)
N=NP
10 CONTI NUE
RETURN
END

What does STI B do? Evidently it is a function—that is, for given (implicit integer) arguments it
returns another integer computed by some laborious process of dividing and multiplying by 2,
performed K times. Only the author himself is likely to realize that the subroutine’s name, “bits”
spelled backwards, suggests that the function reverses the order of bits in the binary representation

of an integer lying in the range ﬁ, K-1H, a process employed in the fast Fourier transform
algorithm. For someone who needs the program of which this function is a part, the absence of
explanatory comment might entail frustrating hours of deciphering before he gets the point. How

much better had the author taken the time to add comments, leading to
| NTEGER FUNCTI ON STI B(N, K)

Return the bit-reversed integer corresponding to the
K least significant (rightnost) bits of N.

Al gorithm

Shift STIB one bit to the left and add the LSB of N
Shift N one bit to the right. Repeat K tines.

O0O00000O0

initialize result
STI B=0

(@)

repeat K tinmes

220 Readability

DO 10 I=1,K
C right-shift 1 bit
NP = N2
C left-shift old result, add LSB of N
STI B=N+2* (STI B- NP)
C replace N by right-shifted version
N=NP
10 CONTI NUE
RETURN
END

Languages that include in-line comments and bitwise logical operatorsz—BASIC, C, Forth, e.g—
permit a clearer statement of the algorithm. For example in C,

int stib(int n, int k) /'l reverse order of bits of # in [0, 2"k-1]

{ int i;
int j=0; // initialize answer
for(i=1; i<=k; i++) [/ loop k tines
{ j=2*]+(n && 1); /1 left-shift result and add 1's bit of n
n=n/ 2; /1 shift n one place to right
}
return j;
}

For completeness I include the Forth version:

stib ((nw--n") \ reverse order of bits of nin [0, 2" 1]
LOCALS| w n | \ def local variable nanes
0 (--0) \'nn =0 is top of stack
w0 DO (n) \ loop wtinmnes
2% \ left-shift n’
n 1 AND \ get 1's bit of n
+ \ add to n’
n 2/ TOn \ right-shift n-- equivton=n/2
LOOP \ end | oop

Documentation in Forth takes two forms. Since Forth uses the machine stack directly for communi-
cation between subroutines, we customarily include a “stack comment”. The parenthesized comment
(nw-- n") following the name says that the subroutine STI B expects to consume two integers
from the stack and leave one (integer) result on the stack. (Despite how it looks, it is a comment,
not an argument list.)

The parenthesized comment (n’) following DOis something like an “assertion”*—it states that
each time the loop is executed it begins with an integer on the stack (and therefore must leave one
as a result!).

3. Forall [know, later versions of Fortran may provide bitwise operations.

PHYS 551 Computational Methods of Physics 221
Chapter 13 Programming in style

Finally, Forth has the “drop line” comment set off by \ (“back-slash, blank”) equivalent to the tick
(") in BASIC and the //in C.

Comparing the programs, we see that Fortran’s lack of such bitwise logical operators as && or AND
made it necessary to obtain the 1’s bit of the input by the circuitous route of first setting that bit to
zero (right-shift by one bit to make the 1’s bit “fall off”, then left-shift one bit to replace it with 0);
then subtracting the result from the original input. For efficiency we combined the shift operations
(synthesized as integer divide- and multiply-by-two) so as to minimize the net number of multiplica-
tions and divisions. But this tends to make the algorithm seem rather different from what we were
actually trying to do, lowering readability.

Expressing the function in several languages5 emphasizes the following points:

* omitting comments obscures the algorithm—at the very least every function should be accompa-
nied by a brief statement of its purpose;

*» the operators and notational conventions specific to each language account for much of the dif-
ference in code readability between languages—that is, when one examines the history of a high
level computer language one finds its author(s) concerned with handling more gracefully some
specific problem, most often stylistic in nature.

However, comments can be unhelpful. As a case in point I present three versions of the same
subroutine for converting to binary a 2-digit decimal number in packed BCD representation6. These
formulations represent a discussion by three regular contributors to the newsgroup comp.lang.forth .
(I have taken the liberty of editing their remarks for spelling and clarity.) The first asked

Folks, do you find such style for one-liners readable?

bcd>bin (uc -- uc’)
\ tens div_16 nmult_10 ones add
DUP OF0 AND 2/ DUP 2/ 2/ + SWAP O0F AND +

The second programmer replied

Your comment indicates bad factoring, especially the one above 2/ DUP 2/ 2/ +.It's even
wrong, because the result is as if first multiplying by 16, and then dividing by 10 (someone might
“optimize” the OF0 AND out, if he takes the comment literally, and by doing so introduces a
bug). Therefore:

4. Assertions are an idea pioneered by C.A.H. Hoare, as a discipline for correct programming. See, e.g.,
Jon Bentley, Programming Pearls (Addison-Wesley, Reading, MA,1989), p. 42 et seq. It is as easy to add
assertion capability to Forth as to C code.

5. The BASIC version would look very like the Fortran one, except it would have permitted us to say
STIB = 2*STIB + (N AND 1) : N + M 2 and thus shorten the program slightly.

6. Packed BCD stores one (decimal) digit per nybble (4 bits).

222 Readability

*10/16 (nl -- n2) 2/ DUP 2/ 2/ +
tens (bcdxy -- bcdx0) $FO AND ;
ones (bcdxy -- bcdOy) $OF AND ;
bcd>bin (bcd -- n) DUP tens *10/16 SWAP ones +

: \ much faster than 10 16 */

You might factor t ens and ones out (as above), but it’'s hot as obscure as the shift-add
replacement of division and multiplication. However, if you do more BCD handling, t ens and
ones might be good factors, anyway. They improve readability much compared to <magi ¢
humber> AND.

[think this example shows what | mean when | claim commenting often indicates bad factoring,
and good word names can replace comments. Factoring in Forth is not just a means to reduce
program size!

So if you find youreelf commenting some code eequence with a single word (as above), you'd
do better to factor the code sequence and name it precisely that word.

The third author also replied to the first:

Yes, it's clear, but | don't like one-liners - can’t see the point. For what it'e worth this is what
I'd do:

BCD>BIN ([xy] -- n) \ two digit packed BCD to binary
DUP $FO and ([xy] [x0]) \ get nore significant nibble
2/ dup 2/ 2/ + \ 1/2 + 1/8 = 10/16, ns nibble *10/16
SWAP $0F AND (10*x y) \ get less significant nibble
+ \'n=10x +vy

The 2/ DUP 2/ 2/ + isaneat trick - I'll remember that.

What we have seen is that the original clever code—a “hack”"—had a descriptive comment over it,
but nevertheless interrupted the semantic flow by making the reader stop to think “Huh? Whazzat?”.
The second (improved) version helped the clarity by giving each operation a descriptive name, so
that the final subroutine, bcd>bi n, simply reads as a description of the algorithm: duplicate the
number, get the tens digit and multiply it 10; then get the ones digit and add. The commenting is
also more helpful, since he explains why the hack is used rather than the much clearer code that has
the same effect: the hack is much faster.

But the third author’s approach is the clearest: he not only puts each major step on its own line, he
also explains how the hack works!

7. We discuss excessively clever tricks and their effect on clarity below.

PHYS 551 Computational Methods of Physics 225
Chapter 13 Programming in style

Control structures

The next aspect of readability has to do with control structures. Programs would be either clumsy or
impotent without the ability to execute conditional branches. Based on some condition—a certain
number is zero, a certain bit is set—a conditional branch either does nothing (so execution proceeds
to the next instruction) or resets the pointer to the next instruction so it points somewhere else in
the program. All the standard high-level control structures for looping—DQ, FOR, WHI LE...—or
branching—I F, ELSE, CASE...—are synthesized from one or two conditional branch primitivess.

As an example of hard-to-read code, consider the Forth subroutine >FLQOAT for converting a string
to a floating point number, shown on the following three pages. This is a required subroutine for ANS
Forth systems that implement the FLOATING point wordset. According to the dpANS94 specifi-
cation,

“An attempt is made to convert the string specified by c-addr and u to internal floating-point
representation. If the string represents a valid floating-point number in the syntax below, its
value r and TRUE are returned. If the string does not represent a valid floating-point number
only FALSE is returned.”

As given, the subroutine exemplifies the besetting sins of sloppy programming style9: excessive length,
deeply nested control structures, repeated code fragments that should be named and factored into
separate subroutines.

The programmer evidently thought—as so many do—that using a program editor with “pretty-print-
ing” capability (that is, laying out the code with indented control structures, and with the beginnings
and ends of control structures vertically aligned) was enough to ensure readability. Well, ipso facto,
it wasn’t.

Once we understand what is going on, the algorithm becomes absurdly simple. In pseudocode it is

\ pseudocode al gorithm for >FLOAT, assumi ng | EEE representation
>FLOAT (c-addr u -- flag) (f: -- r | <nothing>)

is it properly fornmed? |IF
save al gebraic sign
get mantissa \ nornelize mantissa (nove decimal point to the left end)

\ convert normalized nantissa to fp nunber

get exponent \ conpute appropriate power of 10 to multiply by
raise 10 to that power (exponent + #digits to left of dp)
multiply (F*)
al gebrai c sign was negative? |F FNEGATE THEN
| eave TRUE fl ag

ELSE |eave FALSE flag THEN

8. A primitive is a simple code fragment—it might be at the level of the actual machine code—underlying
a user-level instruction. In Forth, e.g., the basic branching primitive is 0BRANCH which jumps to the
(relative) address contained in the memory cell immediately following itself, if the number on top of
the stack is O.

9. And lest the reader think only Forth programmers write such monstrosities, Numerical Recipes—in For-
tran, C or Pascal—is chock-full of similarly obscure code.

224 Readability

>FLOAT (c-addr u -- f) (f: -- r | <nothing>)
dup 0=
IF drop drop false EXIT
THEN
128 um n charcnt ! \ save character count
init->float
next - char drop \ get first character
dup bl =
I F drop charcnt @bl skip charcnt !
next - char
| F drop drop f0.0
true EXIT \ special case of 0.0
THEN
THEN
Xsign
| F IF 8 ELSE 0 THEN
19 bcd-char!
next - char
IF drop drop false EXIT THEN

THEN
BEG N digitO \ check for leading 0's
VWHI LE drop next - char
| F drop drop f0.0 true EXIT THEN
true zerochar !
REPEAT
10di gi t
I F
BEG N $fsignif intcnt @+ c!
1 intcnt +!
next - char
IF drop drop >float-int true EXIT THEN
10digit 0=
UNTI L
fal se zerochar
THEN
dup [CHAR] . = \ decinmal point?
| F drop next-char
|F drop drop >float-int true EXIT THEN
intcnt @O0=
I F
BEG N digitO
VWH LE drop next-char
| F drop drop f0.0 true EXIT
ELSE 1 fracnt +!
THEN
true zerochar !
REPEAT
THEN
10digi t

PHYS 551 Computational Methods of Physics 225
Chapter 13 Programming in style

| F fal se zerochar !
BEG N $fsignif intcnt @+ c!
1 intcnt +!
1 fracnt +!
next - char
IF drop drop >float-int.frac true EXIT THEN
10digit 0=
UNTI L
THEN
THEN
e- char
I F \ exponent i ndi cator
\ zerochar @ \ optinization, manti ssa=0
\ IF drop f0.0 true EXIT \ then whol e nunber is zero
\ THEN \ unfortunately skips validation
intcnt @O0=
IF (SMuB 07-20-95 drop) f1.0 19 bcd-char@
[CHAR] 0 <> (<-- SMuB 07-20-95)
| F fnegate THEN
ELSE >float-int
THEN
next - char
|F drop drop fracnt @
IF f10.0 fracnt @ negate f**n f* THEN
zerochar @ \ nmanti ssa=0?
IF fdrop f0.0 THEN \ then neke result 0.0
true EXIT
THEN
Xsign
| F >r next-char
IF r> drop drop drop
fracnt @
IF f10.0 fracnt @
negate f**n f*
THEN
zerochar @ \ mantissa=0?
IF fdrop f0.0 THEN \ then neke result 0.0

true EXIT
THEN
ELSE 0 >r
THEN
ELSE >float-int
Xsi gn
I F >r next-char
IF r>drop drop drop fdrop false EXIT
SMUB r>drop drop (SMuB 07-20-95 -->) drop
SMuB fracnt @
SMuB | F f10.0 fracnt @
SMUB negate f**n f*
SMuB THEN
SMUB true EXIT

— - - - - —

THEN
ELSE drop drop fdrop false EXIT
THEN

226 Readability

THEN
drop 1- charcnt @1+ nunber?
doubl e? 0= and \ Cctober 1st, 1996 - 10:51 tjz & am
\ doubl e exponent not all owed
IF d>s r>
| F negate THEN
fracnt @negate + f10.0 f**n f*
zerochar @ \ manti ssa=0?
IF fdrop f0.0 THEN \ then neke result 0.0
true
ELSE
2drop fdrop false r>drop EXIT
THEN ;

PHYS 551 Computational Methods of Physics 227
Chapter 13 Programming in style

The actual subroutine consists of seven basic operations. By appropriately defining and naming these
operations the algorithm becomes almost self-explanatory and needs few additional comments. That
is, one might write

\ convert a string to a fp nunber on the fp stack

f p#? (end beg -- flag) \ test a string for proper fornat
skip_sign skip_digits skip_dp skip_digits skip_exponent (end beg')
- -1 = \ if it was properly fornmed, beg’ =end + 1

$ends (beg len -- end beg) \ convert $info to pointers
OVER + 1- SWAP ;

>FLOAT (c-addr u -- flag) (f: -- r | <nothing>)
$ends (end beg)
2DUP fp#? |IF

get_sign (sgnflag end beg’)

manti ssa (sgnflag power end beg’’) (f: mantissa)

exponent (sgnflag power’)

10 S>F (sgnflag power’) (f: mantissa 10)

fAn (sgnfl ag) (f: mantissa 10"power’)

F* (sgnfl ag) (f:0r])

| F FNEGATE THEN (f:r)

TRUE \ successful conversion!
ELSE 2DROP FALSE \ not properly forned
THEN

The example subroutine—nearly three pages long and viciously unclear—is the programming
equivalent of a run-on (and on and on and on and...) sentence. Just as we eschew run-on sentences
in the name of clear prose, we must do something about prolix subroutines. The proposed alternative
breaks the main subroutine down into manageable pieces, defines them as separate subroutines, then
recombines them. Note that the main subroutine, >FLOAT, exhibits exactly two control structures,
and they are not nested. Hence there is no convoluted logic and no problem with debugging.
Manifestly the subroutines mant i ssa and exponent will contain control structures—probably
BEG N... WHI LE... REPEAT indefinite loops—Dbut they need be neither complex nor nested. And
these complexities are appropriately hidden from the main subroutine, that only cares whether its
components do their jobs properly.

Because Forth programs directly access the cpu stack, they avoid the overhead from building up and
tearing down stack frames incurred in languages like C, Fortran, Pascal and Basic. Thus fine-grained
decomposition into short subroutines degrades performance much less in Forth than in other
languages. C programmers concerned with performance therefore tend to write run-on subroutines.
Experienced Forth programmers tend to write short, simple subroutines. My guess is that the example
program was written by a C programmer, mentally translating directly to Forth without rethinking
his coding style.

To conclude, there is nothing inherently unclear about any of the languages in current use despite
the existence of reams and blivets'® of unreadable code written in them. Well-commented, transpar-

225 Testability and safety

ent code is an achievable goal: the key is to worry about performance last and write the clearest
program one can.

3. Testability and safety

A digital computer is a form of deterministic finite state machine. When we add software, the number

of effective states grows so rapidly with program size that it can be very difficult to say definitively,
for a moderately complex program, that all possible responses to all possible inputs are known'!. Thus
the issues of testability and safety are closely linked.

I cannot emphasize too strongly that in a world where more and more routine tasks are delegated to
computers, it is vital to be sure that both the systems and their programs are as safe as possible. The
term safe is fairly elastic: it can mean preventing incorrect, unexpected, damaging or life-threatening
outcomes; as well as protecting networked systems from access or attack by unauthorized persons.
Although the latter has become a major issue in an era of computer viruses and misuse of private
data, we shall have little to say about it. Instead we concentrate on how to write correct programs
that either function as expected or fail gracefully.

Anincorrect program can produce effects ranging from loss of data (tolerable if it is merely tomorrow’s
homework assignment, serious if it is your life savings); loss of an expensive piece of machinery (as
in the recent Mars Climate Orbiter fiascolz); or even loss of life. Although disasters are more likely
from wrong programs on computers used in control applications (vehicles, nuclear reactors, radiation
therapy), even programs for data acquisition and analysis can cause casualties in the right circum-
stances. A case cited by Neumann? describes how software that collected wind-tunnel data, software
that theoretically analyzed the aerodynamics, and software that analyzed low-speed flight tests on a
new type of aircraft, all agreed that tail vibration would not be excessive. On the first test flight the
tail broke off, crashing the plane and killing the crew. The probability that all three programs would
contain independent errors that produced incorrect, but agreeing, results was small, but certainly not
zero—it happened!

Since it is theoretically impossible to determine with certainty (within the lifespan of the program-
mer!) the behavior of complex of software running on a given computer, the best we can do is first,

10. Look it up! (Try the OED or Dictionary of American Slang.)

11. This is an example of the “halting problem” for a given program. See, e.g., R.P. Feynman, Feynman Lec-
tures on Computation, ed. by A.J.G. Hey and R.W. Allen (Addison-Wesley Publishing Co., Inc., Read-
ing, MA, 1996), p. 80ff.

12. On 23 September 1999, a space probe intended to orbit about Mars crash landed because the attitude
thrusters were calibrated in pounds but the NASA team assumed the calibration was in Newtons.

13. P.G. Neumann, Computer-Related Risks (Addison-Wesley Publishing Co., Inc., Reading, MA, 1995), p.
220ff.

PHYS 551 Computational Methods of Physics 229
Chapter 13 Programming in style

estimate failure probabilities; and second, try to provide graceful (“failsafe”) ways for a program to

fail.

The easiest way to make software reliable is to keep it simple. This does not mean it is impossible to
create a complex program—such as one that operates a multipurpose robot or flies an airplane—but
rather that it is vital to break such programs up into small, manageable chunks that can be tested in
isolation. A small subroutine can be understood completely, and its responses to all possible inputs
established through systematic testing. Although when such subroutines are combined into larger
programs their reliability becomes less certain, nevertheless this is our best hope for creating reliable
programs.

The most common sources of program failure are address errors and logic errors. An address
error—caused, for example, by attempting to access an array element with the index out of
range—can lead to writing data into memory where program code is expected. When the computer
attempts to interpret the data as instructions, there is no telling what will happen next. Some
programming languages build in error checking to prevent compiling programs with addressing errors,
with a notable lack of success. The notorious “General Protection Fault”, too often encountered by
users of Microsoft Windows ®-based programs, results from addressing errors. Because of the difficulty
of preventing addressing errors in software, Intel and other manufacturers have built into their cpu
chips a “protected mode” of operation that allocates memory segments with different access privileges
for program and data. When a program attempts to store data in memory with the wrong privilege
level, the program fails, generally not gracefully. Usually the only remedy for a program that has
caused a General Protection Fault is to kill it, losing any data that was being worked on, possibly
damaging key files, and so on.

Logic errors generally result from excessively convoluted control flow or decisions nested excessively
deeply. Too many programmers implement decisions via complex binary logic trees when some other
form of decision structure—such as a jump table or finite state machine—would be more appropriate.
Deeply nested binary trees have the unfortunate characteristic that, unless the programmer is very
careful (and most are not!) the conditions that lead to a particular outcome are not mutually
exclusive. In that case the logic becomes impenetrable. Sometimes such practices create branches
that no condition can reach. Such branches are called “dead code”: programs containing them are
not exactly the acme of computer science.

The reliability of software is best established by testing. Systems and languages that make it possible
to run more tests per unit time, or that facilitate incremental testing, should be preferred to systems
that hinder testing or that permit only large chunks of code to be tested at a time.

Finding the bugs in a large complex program is obviously harder than finding the bugs in small pieces
of code. For this reason I favor interactive languages like Forth, Lisp or Basic over noninteractive
ones like C, Fortran or Pascal, that require a subroutine to be compiled with an exercise program in
order to test it. With interactivity the feedback is much more immediate and the results of changes
easier to analyze.

250 Testability and safety

There are several key aspects of software testing. The most basic has to do with having an adequate
supply of test cases with known results. The more such cases one can run, the more one can rely on
the program for the cases one actually wants to compute, that have not been done before.

[have already emphasized the discipline of coding in small manageable units. Let me expand on this.
If a given piece of code has one entry point and one exit point—that is, if the code is structured'*—the
flow of control is greatly simplified. The analysis of possible outcomes for given inputs is thereby
simplified also. Some languages, notably Fortran and assembly language, permit multiple entry points
to a subroutine. The reason for this is that overlapping the code can be a great space saver, something
one may have to consider when memory is tight. Such an overlapped Fortan subroutine might look

like this:

SUBROUTI NE FOO(A, B, C)

do sone stuff involving C (and possibly A and B)
ENTRY: FOOL(A, B)

do sone other stuff involving B (and possibly A)
ENTRY: FOR2(A)

do stuff involving A only
RETURN
END

If the calling program said CALL FOX(A, B, C) the program would execute everything (that is, the
ENTRY: statements would be ignored), whereas if one said CALL FOOL(A, B) the program would
be entered at the point ENTRY: FOOL(A, B) and continue from there. Multiple RETURN
statements could also be interlarded in the code, giving rise to a multiplicity of entries and exits. (Lest
the reader believe one cannot simulate multiple entry/multiple exit code in Basic or C, Basic’s assigned

GOTOor C's SW TCH statements offer unlimited scope for folly.)

Multiple-entry, multiple-exit code must be avoided at all costs. It is nearly impossible to test
adequately and can lead to exceptionally elusive bugs. But is this asking the impossible, i.e. can we
always avoid unstructured code? In my opinion every computational problem can be solved with a
structured program. Structured code may requite more memory, but it can be understood and
debugged.

Certain disciplines have been invented to systematize the debugging and testing process. The simplest
is version control. Here we assign to a given version of a program a number such as 0.34. We keep a
copy of this program in a sacrosanct archive—preferably on a removable medium like a tape or
diskette. The working copy resides—and gets modified—somewhere else. The program’s assigned
number has the following significance: the zero (0) means it is a test version, not to be released or
published. The three (3) following the dot (.) means it is our third major attempt. We do not change
the version number unless the current version is so buggy, or performs so poorly, that a major rewrite

14. “Structured” programming is a notion introduced by N. Wirth, the inventor of Pascal.

PHYS 551 Computational Methods of Physics 251
Chapter 13 Programming in style

is indicated. The rewrite may entail changing algorithms or data structures, altering program flow, or
some other change so momentous it severs the connection with earlier major versions of the program.

The four (4) following the 3 indicates that minor bugs have been found and corrected four times.
We increment this number each time we discover, repair, and retest for a bug.

A second discipline that has proven useful is the assertion’, already alluded to above. Assertions are
statements about a program or subroutine. For example, suppose we have written a function
BSEARCH that locates items in an ordered list by the binary search algorithmlé. Some languages
allow a program designed to exercise and test BSEARCH to contain statements like

ASSERT(list(BSEARCH("item, list)) = "item)
ASSERT(list(BSEARCH("itent, list) - 1) ="") " returns the enpty string
ASSERT(list(BSEARCH("non-itenf, list)) ="") ' returns the enpty string

which determine whether the routine will find an item contained in the list, that it is the first
occurrence of that item, and that if it looks for something not in the list it will indicate failure in an
appropriate mannetr.

Forth, C and C++ permit the definition of macros'’ that can perform this sort of assertion. For
example in C,

#define ASSERT(e) if (!(e)) error("assertion failed")
/1 e stands for “any expression”

In Win32Forth assertions are defined as

CR .(Loading Assert Wrdset...)
0 val ue assert?

assert ((-<words>-)
assert? 0=
I F POSTPONE (
THEN ;| MVEDI ATE

15.]. Bentley, ibid.
16. We suppose BSEARCH returns the index in the list, of the first occurence of the desired item.

17. A macro (“macro-operation”) is an instruction to compile a certain set of operations under a common
name. It is something like a subroutine, except that instead of the program branching to, and returning
from, a separate piece of code, the macro is replaced by its corresponding instructions in-line in the
main program.

252 Testability and safety

?assert (flag nfa --)
SWAP
I F DROP
ELSE CR ." Assertion failed in " NFA-COUNT TYPE
CR ." Enter to continue, ESC to abort"
KEY Ox1B = |F ABORT THEN CR
THEN ;

?COWP
LAST @ POSTPONE LI TERAL
POSTPONE ?assert ; | MVEDI ATE

An example of usage is

TRUE TO assert?

at est (--)

assert(i 5 <)
LOOP ;

atest 012 345

Assertion failed in ATEST

Enter to continue, ESC to abort
ok

Often one does not need to go as far as actually defining and inserting such macros. Comments
describing what the state of the program should be at given points may well be enough, especially if
the program can be run in a single step mode via a debuggerls.

It is useful to specify “loop invariants” for looping constructs. That is, a loop is just a sequence of
actions that gets repeated either a definite number of times or until some condition is satisfied. The
code within the loop must find the same number and kinds of inputs, and produce the same number
and kinds outputs, every time the loop is executed. The list of inputs is a loop invariant, as is the list
of outputs. Another sort of loop invariant can be an assertion about inequality. That is, the current
value of some variable must—assuming the program is correct—always remain bounded above and
below by limits Uand L. If so, state it as a comment or an assertion.

18. Debuggers are programs that—depending on their degree of elaboration—run your program as a sub-
routine, executing one line at a time (or executing up to some breakpoint) then pausing to let the pro-
grammer inspect the current values of variables and so on. As a Forth programmer I rarely use a debug-
ger, but they are necessities of life for testing Fortran, C, Basic, and especially assembly language pro-
grams.

PHYS 551 Computational Methods of Physics 225
Chapter 13 Programming in style

4. Maintainability

Programs sometimes have surprisingly long lifetimes. Morsels of code we write to solve one problem

often end up in libraries—often without much editing for readability or code quality'®. Scientific
programmers encounter the problem of program maintainance in two contexts:

* they find they need to re-use (with modifications) code they themselves wrote six months earlier,
that was to have been a one-off; and find they can neither understand what it does nor how it
does it;

* they want some code from a library to dosome particular task, and find that it needs some minor
tweaking, which cannot be done without understanding thoroughly the algorithm and code.

Even if it is your own code, when you look at it for the first time in six months or a year it will seem
foreign. Hence in either instance one must try to understand a program written by a stranger, probably
one with a decidedly odd and uncouth programming style, and always with completely inadequate
documentation.

Adhering religiously to three rules will make programs maintainable:

* Avoid tricks and “hacks”.

* Hide data.

* Design for change.
Hacks

What do we mean by “avoid tricks”? We previously saw a subroutine that used the locution

$FO AND 2/ DUP 2/ 2/ +

for getting the tens digit of a 2-digit packed BCD integer, and converting it to binary—in lieu of the
equivalent

4 RSHFT 10 *

which would have been much clearer.

19. Commercial and non-commercial purveyors of code libraries deal with safety and testing issues with dis-
claimers: notices in legalese stating bluntly that the user is on his own, caveat emptor. [have yet to see
the disclaimer that warrants that the program will do anything useful, much less that it will refrain
from doing something harmful. The disclaimer in Numerical Recipes reads “We make no warranties, ex-
press or implied, that the programs contained in this volume are free of error, or are consistent with
any particular standard of merchantability, or that they will meet your requirements for any particu-
lar application. They should not be relied on for solving a problem whose incorrect solution could result
in injury to a person or loss of property. If you do use the programs in such a manner, it is at your own
riek. The authors and publisher disclaim all liability for direct or consequential damages resulting from
your use of the programs.”

254 Maintainability

Here is another simple and (I blush to say it) cute trick I use frequently in my own code. But when I
publish code I am careful to extirpate the trick. I will first show the trick, then explain why the best
advice is “don’t”.

Modern (ANS-compliant) Forth systems represent the TRUE flag as an integer register with all its
bits set to 1, and the FALSE flag as all bits set to 0. If the cpu uses 2’s-complement arithmetic*® TRUE
has the same representation as the integer —1 and FALSE is the same as the integer 0. Suppose we
want to skip a certain character in a string (for example, my FORmula TRANGslator that embeds
“_" sign). This can be accomplished by
advancing a pointer one unit if it currently points to the character we want to skip, and by not
advancing the pointer otherwise. The usual solution for such an action would use an | F statement,

Fortran expressions in Forth subroutines skips a leading

as in

skip (ptr char -- ptr+1 | ptr)

OVER C@ \ duplicate pointer and get character
= \ is it equal to char?

IF 1+ \ if so, add 1 to ptr

THEN

But the special nature of the TRUE flag (on a 2’s complement machine) allows us to compute rather
than decide the action:

skip (ptr char -- ptr+1 | ptr)
OVER C@ \ duplicate pointer and get character
= (-- ptr -1]0)
- \ ptr = ptr - flag
However, on a 1’s-complement cpu (they are no longer plentiful, but they do exist) setting all bits to
1 yields the largest integer possible. It would not be a good idea to subtract that from the pointer. In
other words, my SKi p subroutine is not fully portable. As the ANS94 Forth Standard requires us to

say, it creates an “environmental dependence” (because it assumes 2’s-complement arithmetic). This
can be fixed (if we want to do it) by rewriting it as

skip (ptr char -- ptr+1 | ptr)

OVER C@ \ duplicate pointer and get character
= (-- ptr flag)

1 AND (-- ptr 1]0) \" bitwise AND

+ \ ptr =ptr + (1 & flag)

While correct, portable and still decision-avoiding, the locution

OVER C@ = 1 AND +

20. See Chapter 1. Oddly, despite its simplicity and utility, 2’s-complement arithmetic is not universal.
Some processors use other methods such as 1’s compement or sighed magnitude arithmetic.

PHYS 551 Computational Methods of Physics 255
Chapter 13 Programming in style

has lost its magic. Better to avoid it altogether since the version using | F is self-explanatory.

Here is another example, from Fortran this time. Before Fortran permitted dynamical array allocation
(that is, passing an array’s address to a subroutine rather than all the array elements) some
programmers had discovered the following trick:

PROGRAM MAI N
DI MENSI ON A(100, 100)

CALL HI LBERT(A(1,1), 20)

SUBROUTI NE HI LBERT(A, N)
DI MENSI ON A(1)
DO 20 1=1, N
DO 10 J=1, |
A(1,J) = 1./ (FLOAT(I+J)
IF (J.LT.1) A(J, 1) = A(l,J)
10 CONTI NUE
20 CONTI NUE
END

This trick depended on knowing a number of details about the compiler—in particular, that matrices
are stored column-wise in contiguous memory cells, and that the element A(1, 1) actually represents
the base address of the array. It also depended on knowing that the (variable) arguments in a
subroutine’s parameter list were the addresses of these items in the calling program. Since some
Fortran compilers routinely passed values rather than addresses, the trick was guaranteed to fail when
compiled with the latter. Finally, it assumed the compiler would not notice that the dimensionality
of A(1) (in the DI MENSI ONspecification) was not the same as that of A(| , J) used elsewhere. If
the compiler checked for consistency, the trick would be worthless.

Here is a third kind of trick to avoid. Unlike the others it is completely portable. What is wrong with
itis thatitis so subtle (albeit fast) that some analysis is required to see why it works. Worse, it employs
«“ c» .) . . 21

magic” numbers whose significance to the algorithm is by no means clear

\ count the number of non-zero bits in an unsigned 32-bit integer

OCTAL \ interpret integers as base-8 until further notice
ones (uint32 - nunbits)
DUP 1 RSH FT 33333333333 AND
DUP 1 RSH FT 33333333333 AND + -

DUP 3 RSHIFT + 30707070707 AND 77 MOD

DECI MAL \ restore base-ten arithnetic

21. Ilearned this trick several years ago from Michael Pruemm. (In fact it is a very good trick, but it does
not lead to maintainable code.) The ANS Forth subroutine RSHI FT is equivalent to the C function
>> .

236 Maintainability

A more maintainable way to do it is the bit table method advocated by Bentleyzzz we create a table
recording how many bits are in each of the integers in the range—say—/[0,15] (that is, a table of bits
per nybble). Then we successively get the least significant nybble, retrieve its bit count, add it to the
net count, shift the integer rightward 4 bits, and repeat (8 times in all). The code for this is

under + (abc--atcb) ROT + SWAP ;
bits (n-- count)
0 SWAP
BEG N ?DUP WHI LE
DUP 1- AND 1 under+
REPEAT

CREATE BI TS/ NYBBLE \ nake a 16-elenent table

0 bits C, 1 bits C, 2 bits C, 3 bits C,

4 bits C, 5 bits C, 6 bits C, 7 bits C,

8 bits C, 9 bits C, 10 bits C, 11 bits C,

12 bits C, 13 bits C, 14 bits C, 15 bits C,

ones (uint32 -- nunbits)

0 swap (numbi t s=0 ui nt 32)

7 0 DO (repeat 7 tines)
DUP
[BINARY 1111 DECIMAL] LITERAL AND \ get rightnost nybble
CHARS \ convert to offset
bits/nybble + C@ \ retrieve table elt
under + \ add to nunbits
4 RSH FT \ shift 4 bits to right

LOOP

CHARS bits/nybble + C@ + (numnbi ts)

Although considerably lengthier than the tricky algorithm, this code is much clearer. To emphasize
the point that we are getting the last 4 bits each time, the AND operation is exhibited with the binary
representation 1111 of (decimal) 15 or (hex) FE (In C or assembler we would simply say 1111B.) If
we are willing to waste some more space we can use 256 bytes instead of 16, to hold a table of bit-counts
for the first 255 integers. Then we would AND with 255 (11111111B) and right-shift 8 places,
repeating 4 times. That is, we can trade space for speed.

The moral of these examples is that most programming languages permit the use of clever tricks, but
it is wiser to avoid them if maintainability is our goal.

Data hiding

We turn now to “data hiding” or “information hiding” as a principle of program design. At its most
elementary level, if a subroutine needs a “magic” number (such as octal 33333333333 or
30707070707) the number should be built into that subroutine as a literal. It never needs to appear

22. ibid, p. 83.

PHYS 551 Computational Methods of Physics 257
Chapter 13 Programming in style

or be referenced elsewhere in the program, so it need not reside in common storage. Thus it is less
easily corrupted by another subroutine—it is hidden.

Hiding information can also be part of designing for change. For example, if the state-of-the-art
display has 640 by 480 pixels, rather than sprinkle literal 640’s and 480’s around randomly in your
graphics programs like raisins in raisin bread, it is better to define constants

640 CONSTANT screen_wi dth
480 CONSTANT screen_hei ght

(or the equivalent in your language of choice) at one place in the program. Then if the new top of
the line displays have 1280 by 960 pixels (for example), only one change is needed. Better still, relegate
all such data (on the display’s salient characteristics) to a separate file to be read by the subroutine
that initializes the display parameters for the current hardware.

It would be equally unwise to rely on a particular coding convention for—say—alphanumeric data.
Today the common usage in Western countries is extended ASCII?; however, at one time EBCDIC*
was a rival standard, and Unicode (using 219265536 rather than 28=256 character codes) may well
become the standard of the 21st Century.

In other words, within your program numerical constants should be referenced by name, not by literal
value. To do otherwise is as bad as writing an organizational instruction manual that refers to Jennifer,
the person in charge of the Help Desk—the instant she leaves the company, the manual becomes
obsolete. Obviously one should refer to the “Help Desk Manager”—then a change of person or sex
will require no updates.

Here is another example where information hiding both increases the readability of a program and
facilitates change: suppose you wanted to operate a 7-segment display device like the one below. By
turning on various segments one can display the digits 0-9 as shown. For example, with segments
0,5,1,4 and 2 turned on the device displays the digit 2. One could obviously program this with an
array of 8-bit integers:

Jl2a950 lo*

Iz\>

(%)
—
—
—_—
-~

(&3]
I
==}
—
=)

23. American Standard Code for Information Interchange
24. Extended Binary Coded Decimal Interchange Code

238 Maintainability

DI M a(10)
a(0) = 01111101B
a(1) = 010100008

a(9) = 01041110B

However this requires the programmer to translate in his head the conversion of which segments are
turned on to a binary representation of an integet.

It would be much kinder, easier to maintain, and more change-friendly to say (I'll do it in Forth, but
it will be similar in any language)

\ Asinple programto drive a segnented displ ay

7 CONSTANT #segs \ nunber of segnents
install, (n0OnNl n2n3n4n5n6--) \ the digits can be in any order
0 \ initialize the array el ement
#segs 0 DO SWAP DUP (n's 0n)
0 #segs 1+ WTHIN NOT \ check if digit seg_# in range

ABORT" a segnment nunber is out of range"

DUP #segs < \ isit a segment # ?
IF 1 SWAP LSHFT THEN \ nove the bit into position
+ \ add the bit to the result

LOCP
) \ store result in next cell

CREATE di spl ay \ the integers are the segnments turned on
\ -- 7 is a"don't care" digit
705634 2install, \' 0
7777746 install, \ 1
7713426 install, \'' 9

>di spl ay (n--) CELLS display + @ >device ;
Let us note what this code accomplishes:

* The only number in the program is the number of segments in the display, defined as a CON-
STANT so if it is changed, the change propagates through the program with no further effort.
This minimizes the chance for error if the code must be moved to another machine, modified to
run a different segmented display (for example with more segments), or otherwise changed over
time.

* The information about the device itself is contained in the table showing which segments get
turned on for a given number. If a different device is to be used, its table will have to be con-
structed by hand. To make it easier for the code maintainer, the integers do not have to be en-
tered in any particular order.

e To make the table uniform and easy to read, we enter a “dont care” number as a placeholder; the
program ignores this number when encountered. Since the actual segment numbers range from 0
to#segs - 1, wecan use #segs itself for the “don’t care” entries.

* The virtue of passing a fixed number of arguments (including “don’t care” ’s) for the subroutine
i nstall, —that constructs each entry in the array di spl ay—is that we can use a definite

PHYS 551 Computational Methods of Physics 229
Chapter 13 Programming in style

loop. Routines that must cope with varying numbers of arguments are difficult to write and debug
(it is easier in Lisp, a language designed to cope with such constructs as variable-length argument
lists). Opt for simplicity whenever possible (and mostly it is possible).

Some noteworthy additional points: some manuals of programming style advocate putting all
numerical constant definitions in a single section of the program. This is not a bad idea for languages
that are batch-compiled (C, Fortran) since then the programmer knows where to look for them.
However, in a long program a given constant can be hard to find since the initialization section will
also be long. If the language permits programming in modules, the repetition of names (that is, the
routine ZOr ¢h in Module Ais distinct from zor ch defined in Module F) renders this sequestration
of initializing code into one section literally impossible. My preference, therefore, is that “local”
constants—that is, constants particular to a module of code—be located physically with the module.

What about error handling? Some style manuals advocate putting all the error handling in one place
rather than sprinkling it through the code. Again, this fights modularization and is just hard to do in
any long program. I prefer to keep error handling within a module, or if it is simple, even within a
subroutine (asini nst al |, defined above). Here I am less doctrinaire since there will be cases—for
example when a program has to be especially fault-tolerant so a machine can keep running—where
the error handling has to be more sophisticated than simply causing an ABORT during compilation
(as above).

F ins

