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Fartial differential equations

We shall study partial differential equations of the forms

Oy =0 (Laplace equation)
2. _0p e .
DOp = % (Diffusion equation)
2
Oy - i@_ W =0. (Wave equation)
u?
) el . .
. O°Y + V(7)Y =ih o (Schrodinger equation)

Of course the diffusion and wave equations can be made more complicated with additional terms
representing sources, but the basic ideas can already be described using the simplest variants.

Texts on mathematical methods of physics discuss the above equations for special geometries in which
the equations can be reduced to several ordinary differential equations. Obviously if this is possible,
it is probably the optimal way to proceed. However, we often encounter cases where the boundary
curves or surfaces are not simple in any coordinate system, hence there is no better way to proceed
than brute-force numerical solution using the most powerful computer available. The raison d’etre
of this chapter is to describe methods for performing such calculations as expeditiously and simply as
possible.

1. Laplace equation

Let us begin with the Laplace equation in two dimensions:

if 32 2
Dzw(x’)_aw ‘Z;g:o, (1)

where the boundary curve (which we shall imagine to be simple, smooth and closed) is described
parametrically by

B, Ef(T) 0

(T) 0

and

WED, 207 = 0.

Relaxation
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A standard approach, the relaxation method, is simple and iterative—hence easy to program for
automatic computers. The central idea is based on this mathematical fact: a function that satisfies
Laplace’s equation is approximated by its average. To make this more precise, let us average Y(x, y)
over an area including the point (xy , yo) :

L 1 )
AS A{ dxdy Wlxg+x,5+y) = Plxg, yo) + [( xo,yo)ElA—S {‘S[ dxdyx + 2)
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Assuming the region, AS, over which we average is chosen symmetrically, the second and third terms
on the right of Eq. 2 vanish by symmetry; the fourth term vanishes because the function | satisfies
the Laplace equation. Clearly these remarks generalize to spaces of higher dimensionality than two.

The relaxation method for solving a typical boundary value problem in potential theory (that is,
Laplace’s equation, with the value of U specified on a bounding curve or surface) thus consists of the
following steps:

* choose a symmetric mesh to cover the region in which we desire a solution;
* fix the value of Y at the mesh points corresponding to the boundary curve or surface;

» replace the value of | at every interior mesh point by the average of its nearest neighbors (cho-
sen symmetrically);

e iterate until the process converges to the desired precision.

Certain tricks can (and should!) be used to speed up the relaxation process. First, any symmetries in
the region of solution should be taken into account. Thus, for example, the reflection symmetry in
the example on the next page halves the net computation time.

Second, the solution should be obtained first on a coarse mesh. The spacing between points can then
be reduced systematically, with the previous solution serving as the initial guess for the next finer
mesh.

On the following page is an example of the relaxation process in operation, solving Laplace’s equation
in a square region with the potential set to 5 on three sides and O on the fourth side of the square.
We now see where the method derives its name: after sufficiently many iterations, an initial guess on
the interior points relaxes to the true solution.
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Analytic function theory

The virtue of relaxation is that it works in three dimensions as well as in two. However, strictly
two-dimensional Laplace problems can be solved using the theory of functions of a complex variable.
A complex function

fle=x+y) = ulx,y) + iv(x,y),

that is analytic within a boundary curve I" satisifes the Cauchy-Riemann conditions

o
ox Oy
o
dy  Ox

and hence both the real part, u(x, y) , and the imaginary part, v(x, y), satisfy the two-dimensional
Laplace equation,

2 2
6u+6u:0'

oo

Suppose we are given that on the boundary I
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df
u(s) = w6, OF,

where we have parameterized I in terms of a real parameter s. If we can find an analytic function
w(y) that maps the interior of I' into a region in the w-plane, bounded by a simpler curve!

C =wu(ll),

we need only find an analytic function that has the appropriate boundary value on C, and we have
found the solution to our original Laplace equation. Often this can be done by inspection, although
Cauchy’s integral formula can be of assistance if the boundary has been mapped into a rectangular
or circular region. This method has been so widely applied in the theory of irrotational fluid flow,
electro- and magnetostatics that lists of typical conformal transformations have been compiledz.

Another way to approach the two-dimensional Laplace equation using complex variable methods is
based on the Cauchy integral representation of an analytic function: if f(z) is analytic within and
continuous on a simple closed curve I', then for any interior point z,

1) =u+w:%1dt%.
r

Suppose we parametrically represent the curve as
ts) = t(s) + ity(s)

where the real parameter s runs from a to b and t(a) = t(b) ; then we may write

b
u(x,) = [ ds K| 3) o) + Ll 5) uOF

b
e 3) = [ ds G % 0) ul) = LI ) v

where in an obvious notation, u(s) = u%l(s), t,(s) Eis the value of the solution of the Laplace equation
on the boundary. The functions K and L are just
Td 1
K| xy) +il(s|xy) =57~ -
(12 5) +iLls] % 5) 21Uds t(s) —x —1iy
The problem with this way of writing the solution is that the function v(s)—that is, the imaginary

part of f(z) on the boundary—must be known before we can compute u(x, y) in the interior. To
construct this function, however, we need only solve a 1-dimensional integral equation:

1. ...in an obvious notation

2. see,e.g., H. Kober, Dictionary of conformal representations (Dover Publications, Dover Publications, New
York, 1952). For examples of conformal transformation methods, also see William R. Smythe, Static
and dynamic electricity, 3d ed. (McGraw-Hill, New York, 1968).
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b
v(r) = L ds H((s| r)u(s) = A(s| r) v(s)H

where
<61 1) = KBJ 10, 500= 5+ (S)t(f)t(r)ﬁ
and
©)

Msln) = LEI 40, 6= 5= Im (s) - t(T)D

where t(s) = dt/ds . We must solve the integral equation

b
u(r) = L ds BK(s [1) u(s) = Als[n) v()H 5

although it might seem as though A(s | r) becomes infinite like (s —r)~
fact the integral equation is non-singular since lim |A(s|r)| < oo.In formal terms we have

N
v+ A= Ku,

whose formal solution is

v=(1+N Ku.

165

Lass o rin the integral, in

We now look at the computational complexity of this method of solution. In practical terms we

evaluate (numerically) a 1-dimensional integral for each point in the interior where we want to know

u(x, y). Thus we replace the integrals by sums

b
u(e,) = [ dsEKGT %) ) + L6 | x5 uof

N

= 2w Kl o9 vls) + Lisel x3) ulsdHs
k=1

K
therefore we need to know the boundary values u(s) and v(s) at the points Esk% . If we replace the

integral in the 1-dimensional integral equation by the same quadrature formula, we obtain K linear

algebraic equations for the values v(s,), which we can solve by standard methods. To obtain the

solution at N? points in the interior will then require time proportional to

1K + KN?,

which may be considered an order N oran N° algorithm, depending on whether K is much smaller
than, or comparable to, N. This is clearly an example where it might be helpful to employ Gaussian

quadrature, since we can get high accuracy with a much smaller number of points than would be

required by a Newton-Cotes formula.
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On the other hand, if we set up mesh points; replace the differential operators with difference
operators, let the values of u(x, y) at the interior points be the unknowns and the values at boundary

points be inhomogeneous terms, we obtain a sparse system of N equations that can be solved in

N? time. This method of direct solution is discussed below in the context of the Poisson equation.

2. Poisson equation

If the coefficient functions in the diffusion, wave or Schrédinger equations are independent of time>,
the substitution

Y(r,0) = (i)
leads to the Poisson equation:
Do +kg=0. (3)

There are several good methods for treating Eq. 3. The first is the variational, or Rayleigh-Ritz
method, based on the fact that Eq. 3 can be derived by varying the functional

4 (di @ 00
Ay = 15—
Idr g

subject to the condition that the variation, 8@ vanishes on the boundary (curve or surface) of the
region of interest.

A typical question we might want to answer is “What values of k’—that is, the eigenvalues—are
consistent with the given boundary conditions?” The variational method replaces the exact solution
@by a trial function X that contains adjustable parameters. Since the eigenvalue represents a minimum
(or at least a stationary point) of the functional A we compute A({X}) and minimize with respect to
the parameters. To make this more specific, consider the lowest frequency of a stretched string with
fixed endpoints. The equation we want to solve is

fo, @, .

dxr ®=

and the variational principle states

3. ...also there must be no source terms.
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Suppose we choose the trial function to be X(x) = x (L —x)—this satisfies the boundary conditions
and is simple to compute with. (In fact this function has no additional parameters that we can vary.)
The result is the estimate

L
dx (L - 2x)° )
W < MZIO— =105
L
I dx x* (L—x)2
0

Since the exact eigenvalue is TC u?/L%, this simple bound is seen to be accurate to about 1.3%.
Next suppose we try the function

X; () = x(L —x) + ax(L -x)(L—2x)
where O is an undetermined parameter. The value of the resulting functional is

10 + 276a° u
A = 72/7 LZ

This is minimized by o = 0. We leave it as an exercise to explain why this particular trial function
produces the same result as the simpler one, and to suggest a better trial function with a zero or zeros
within the interval.

As asecond example, consider a circular uniform drumhead clamped at the rim. Again the transverse
displacement obeys a wave equation, which—upon separating out the time dependence—yields the
Poisson equation in two dimensions:

2
0 +%(p:0.

We know the exact solution corresponding to the lowest frequency is J(kr) where

% = 2.40482...

is the first zero of ], . However, let us try a trial function

X(r, 8) = COSDT[TE
’ 2R3

and evaluate the functional A({X}) . We see that, after removing the dimensional quantities we are
left with

1
2 J'drrB( (T)H ¥ ZI dx x sin’x DTDZ 4
= == = (2.4146...)
Idrra((r)H RZ %E J’Wzdxﬁccosx RS %ET{Z—A} ( )

—again a rather good estimate.

=S

wZ
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Higher eigenvalues and eigenfunctions

We have seen above how to obtain variational upper bounds for the lowest eigenvalue of a Hermitian
operator4. Suppose we want estimates of higher eigenvalues and their corresponding eigenfunctions:
it is easy to see that the appropriate procedure is to find the lowest variational eigenfunction, then
choose functions from a space orthogonal to that function. This will yield estimates of the higher
eigenvalues. (However, it is easy to see that the functional A no longer represents an upper bound
to the next eigenvalue since the trial function may contain an admixture of the true lowest
eigenstate.)

Precision of variational estimates

Another point that is worth making here is that the eigenvalue obtained by the Rayleigh-Ritz method
is always relatively more accurate than the corresponding eigenfunction @. That is, it is easy to show
thatif |[X - @ || < €, then |® — @, | < const x &". The proof may be found in Mathews and
Walker, or in Goertzel and Tralli.

Variational lower bounds

Suppose A is a Hermitian, positive operator (the operator ~[F fits these criteria). Then it is
straightforward to show that if the second and higher eigenvalues are well-separated from the lowest
one,

— 2
6—w2%o§m—a"g,

where
-2
< = A
u
as before, and
(AX, AX)
3({x}) = ut =t An
() =
This yields the lower bound
W, =2 -Vo-o

exact

to the eigenvalue. To illustrate this we consider once again the circular drumhead. With the trial
function

2
T

X(T):l‘g

we find & = 48 ut/ R4, o = 6u/ RZ, hence with the above choice of trial function,

4. This method is sometimes called the Rayleigh-Ritz procedure after its inventors.
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2.4494... > W, R/u > 1.5924...

exact

Indeed the lower bound is not terribly good, but it is a lower bound.

3. Direct numerical techniques

The Laplace equation, for example, can be tackled by more direct means than relaxation. If we
imagine the points on a solution grid (in, say, two dimensions) are labelled sequentially as shown
below, then if we replace the second derivatives by second differences,

Ofg =0

O Wleth,y) = 200, y) + We=h,y) + W, y+h) — 2¢(x, y) + Wi, y—h) = 0

we have, e.g.,

W + Yy + 4y + Yy — 493 =0.
The system of (inhomogeneous) linear equations we derive (one for each point in the grid) turns out
to be quite sparse and simple—only the nearest neighbors in the grid interact with any given point.

Therefore determining the solution at N interior points requires much less than OH\]3 Eﬁme to solve:
in fact, it can be obtained in O(N) time.

A similar treatment applies to the Poisson equation, as well as the time-independent Schroedinger
equation.
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4.  Direct techniques for the wave equation

Recently Cole” has proposed a new differencing scheme for solving the wave equation, that permits
coarser meshes for a given precision, thereby reducing considerably the computational effort of a
given problem. Consider the wave equation in one spatial dimension:

o'y _ o 0w

PR G o

ot Ox
The usual technique for solving such equations replaces the partial derivatives by second differences,
exactly as with the Laplace equation:

2
2 (At 5 v 2
Y- gooveay =0.
AW E

We then integrate forward in time via

2
WA ) = 20 %) — W 1) + %@ V) A2 (e, ) -

It is clear from this scheme that the initial solution, (t=0, x), and the initial time derivative,
0, Y(t=0, x) , must be known® for all x.

The scheme advocated by Cole is based on a modified difference operator

— df
AW x) = Y x+Bhx) — W x — (1-B)Ax)

and a correction function s(x, Ax, ...) such that

LY
o s(x, Ax, ...)

For example, if ) were a solution of the 1-dimensional wave equation corresponding to wave number

k, we could choose s to give the exact partial derivative. That is, let Y = ¢ and choose B = % ;
then
thx _ .7 tkx eikx ikAx/2 —ikfAx/2
0,e" = ike™ = —% - e %
or
s = %sin%%%

0« 0
To apply this idea to the wave equation we also express the time derivative as a non-standard finite
difference and write

5. James B. Cole, Computers in Physics 11 (1997) 287; ibid. 12 (1998) 82.

6. If we are working with two or three spatial dimensions the initial data are specified on a surface or vol-
ume (hypersurface).
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W, 2) = 2000 %) — D x) + 12 AL G 2)

where
_ sin(wA/2)
U = Sk aw2) @
and
_ W
k(x) = R

This approximation is exact in a regime of fixed w and constant v(x); in practice, when the solution
is a superposition of frequencies with a limited bandwidth, and when v(x) varies reasonably slowly, it
is far more accurate than the standard scheme, for a given mesh size.

5.  Monte Carlo methods

If we can devise a random process whose distribution is the solution of the equation we are interested

in, then an approximate solution can be obtained by simulating the random process. For example,
the diffusion equation (heat equation)

ap _ 2
at—DDp

can be derived from particles engaging in a random walk. Thus by following the behavior of many
such particles we can determine the function p(, t) corresponding to a particular set of boundary or
initial conditions. Terms involving first derivatives can be simulated by external forces; similarly terms
involving sources or sinks are simulated by a probability for a particle to be born or to die.

©. Integral equation techniques

Some partial differential equations can be transformed into integral equations: consider, for example,
the time-independent Schroedinger equation,

2 2 - -
T+ & - U(HRMG) = 0, @
for positive energies, k* >0 . We cannot solve the problem until we know the volume containing the
system (for example, it might be a box of peculiar shape, or it might be infinite 3-dimensional space)
as well as the boundary condition(e.g. the solution vanishes at the walls of the box, or it might contain,
asymptotically, only outgoing radial waves appropriate to a scattering problem).
The object is to express the solution in terms of the solutions of the problem for which there is no

potential U( 1) : suppose we know how to solve

3P+ REG.7) = 8967 ) 5
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then, left-multiplying Eq. 5 by Y(r ), and Eq. 4 by G(r, " ) we may subtract the two to find
W(r) & (r-1)

W(H) TP G(7, 7 ) - G(5, 7 ) O () + G(7, 7 ) U(F) W(t)

= EI:I%]J(?)DG(?,?’) - G(r, ) W( ?)H+ G(r,” )U(r)W(r).

Then integrating over r (and interchanging the labels r and 1’ ) we obtain

W(r) = [[fGn 7 UG ) w(r ) di (©)
\%

+ ISJ’HU(? YOG(7,7 ) = G(,7 ) OW( )Hw§’

where S is the surface bounding the solution volume V. Assuming we may impose either of the
boundary conditions

(g =0
or
n I (1) =0
we may drop the surface integral in Eq. 6 to obtain

Y(r) = x(7) + [[fGG UG ) W) dr (7)
\'%

where we have added an appropriate solution X(r) of the homogeneous differential equation to
ensure that the solution of Eq. 7 reduces to that of the homogeneous equation in the absence of the
potential U.

The key to being able to solve Eq. 7 by replacing it with a finite set of linear equations lies in the

character of the potential, U( ) . If it is sufficiently well-behaved asr — 0 and v — oo, the kemnel G(r, 7" ) U(r" ) is
a compact linear operator'. If it belongs to that class of operators, it is guaranteed that if we take more

points to represent the numerical integral, the solution of the corresponding algebraic equations

approaches the solution of the integral equation as closely as we would like. That is, the more time

and money we spend, the better the approximation.

7. Basically, a compact operator can be approximated by a finite matrix, such that as the rank of the ma-
trix is increased, the approximation becomes better.



