PHYS 551 Computational Methods of Physice "7
Chapter 7 Numerical quadrature

Numerical quaalratu re

We begin by defining the definite integral of a function f(x). Then we discuss some methods for
(numerically) approximating the integral. This process is called numerical integration or quadrature.
Finally, we discuss several programs based on the various methods we describe.

1. The integral of a function

b
The definite integralI f(x) dx is the area between the graph of the function and the x-axis as shown
a

below:

W A

L
v

L X

We estimate the integral by breaking up the area into narrow rectangles of width w that approximate
. . . 1

the height of the curve at that point and then adding the areas of the rectangles . For rectangles of

non-zero width the method gives an approximation. If we calculate with rectangles that consistently

protrude above the curve (assume for simplicity the curve lies above the x-axis), and with rectangles

that consistently lie below the curve, we capture the exact area between two approximations. We say

that we have bounded the integral above and below. In mathematical language,

1. If arectangle lies below the horizontal axis, its area is considered to be negative.

16 The fundamental theorem of calculus

(b—a)/w) (b—a)/w

w z min H(a +nw), fla +nw + w)HS I dx f(x) < w Z max %(a +nw), fla +nw +w)H
n=0 “ n=0

[t is easy to see that each rectangle in the upper bound is about w |f'(x) | too high” on average, hence

1
overestimates the area by about sz |f'(x)|. There are (b—a)/w such rectangles, so if |f'(x) | remains

finite over the interval [, b] the total discrepancy will be smaller than

%w(b—a) max |f'(x)] .
asxs<b

Similarly, the lower bound will be low by about the same amount. This means that if we halve w (by

taking twice as many points), the accuracy of the approximation will double. The mathematical
b

definition of I dx {(x) is the number we get by taking the limit as the width w of the rectangles becomes
a

arbitrarily small. We know that such a limit exists because the actual area has been captured between
lower and upper bounds that shrink together as we take more points.

2. The fundamental theorem of calculus

b
Suppose we think of I dx f(x) as a function—call it F(b)—of the upper limit, b. What would happen

if we compared the area F(b) with the area F(b + Ab) ? We see that the difference between the two
is (for small Ab) is

AF(b) = F(b+Ab) —F(b) = A(b)Ab +O((Ab)?)

so that

dF_(b) o L b+0\b _ b 0
B = m oy a b [f de 0~

This is a fancy way to say that integration and differentiation are inverse operations, in the same sense
as multiplication and division, or addition and subtraction.

Thus we could calculate a definite integral using a differential equation solving program (to be
developed in a subsequent chapter). We can express the problem in the following form:

2. f'(x) is the slope of the line tangent to the curve at the point x. It is called the first derivative of f(x).

PHYS 551 Computational Methods of Physice 19

Chapter 7 Numerical quadrature
Savethedffaentid equation
dF _
dX - f(X)

ontheintevd x [[a g with theinitid condition F (g =0.

The chief disadvantage of using a differential equation solver to evaluate a definite integral is that it
gives us no error criterion. We would have to solve the problem at least twice, with two different step
sizes, to be sure the result is sufficiently precise’.

3. Monte Carlo method

The followingis a “brute force” Monte Carlo integration scheme: if a curve is entirely bounded within

a box of corners (xa, ya), (xb, ya), (xa, yb), (xb,yb) then if we pick points at random in the box, the
fraction that fall inside the curve is, in the limit of many points, proportional to the ratio of the area
under the curve to that of the box. It is rather like throwing darts at random, at a target on a wall.
The darts must go somewhere on the wall, and the fraction that hit the target is, within statistical
errors, the ratio of the area of the target to that of the wall.

The following routine implements this idea:
Brute force Monte Carlo integration in 1 dinmension

(c) Copyright 1998 Julian V. Noble.
Permi ssion is granted by the author to
use this software for any application pro-
vided this copyright notice is preserved.

\
\
\
\
\
\
\
\ Usage: wuse(fn.nanme xa xb ya yb)bfntr

\ Exanpl es:

\ use(fsqgrt 10000 Oe 2e Oe 2e fsgrt)bfnc fs. 1.88006E0 ok
\ use(fsqrt 10000 Oe 2e Oe 2e fsqgrt)bfnc fs. 1.90806e0 ok
\ use(fsqrt 10000 Oe 2e Oe 2e fsqgrt)bfnc fs. 1.88486e0 ok
\ use(fsqrt 10000 Oe 2e Oe 2e fsqgrt)bfnc fs. 1.89363E0 ok
\ Environnmental dependenci es:

\ FLOAT wordset, separate floating point stack

MARKER - bf nt

\ Conditional definition of non-Standard words
undefi ned BL WORD FIND NP 0= ;

undefined prng [IF] include prng.f [THEN

undefined s>f [1F] : sf S>D DF [THEN]

3. This is not strictly correct: one could use a differential equation solver of the “predictor- corrector” va-
riety, with variable step-size, to integrate the preceding equation. See, e.g., Press, et al., Numerical Reci-

pes (Cambridge University Press, Cambridge, 1986), pp. 102 ff.

120 Monte Carlo method

undefined f~"2 [I1F] : f~2 FDUP F* [THEN]
undefined ftuck [IF] : ftuck FSWAP FOVER ; [THEN]

undefined wuse([IF]
\ Vectoring: for using function names as argunents

use(’ \ state-smart ' for syntactic sugar
STATE @ |F POSTPONE LI TERAL THEN ; | MVEDI ATE
" NOOP CONSTANT ' noop
V! CREATE ’'noop , DOES> PERFORM ; \ create dummy def’'n
"dfa ' BODY ; (—data field address)
def i nes "dfa STATE @
I F POSTPONE LI TERAL POSTPONE !
ELSE ! THEN ; | MVEDI ATE
\ end vectoring
[THEN]

\ Data structures
v: fdummy

1000 VALUE Nnmax
0 VALUE Npoi nts
0 VALUE Nhits

FVAR ABLE xa FVARI ABLE xb- xa
FVAR ABLE ya FVARI ABLE yb-ya

\ Program begi ns here
0.1 seed 2! \ initialize prng

X (f: —x = xa + xi*[xb-xa]) \ guess a new poi nt
prng xb-xa F@ F* xa F@ F+ ;

y (f: —y =ya + xi*[yb-ya]) \ guess a new poi nt
prng yb-ya F@ F* ya F@ F+ ;

new_poi nt
Npoints 1+ TO Npoints

x fdunmy y F>
IF Nnhits 1+ TO Nnhits THEN ;

initialize (xt n > (f: xa xb ya yb -
TO Nmax 0 TO Npoints 0 TO Nnhits defines fdummy
FOVER F- yb-ya F! ya F! FOVER F- xb-xa F! xa F! ;

) bf nt (xt (f: xa xb ya yb —integral)
initialize
BEG N Npoints Nmax
VWH LE new_poi nt
REPEAT Nhits s>f Npoi nts s>f F/
xb-xa F@ yb-ya F@ F* F*

This random-sampling method is called the Monte Carlo method because of the element of chance.
The disadvantages are twofold: first, at every step, one more random number must be computed than
the dimensionality of the volume of integration. Thus for a function of one variable we need two

PHYS 551 Computational Methods of Physice 121
Chapter 7 Numerical quadrature

random numbers per step, etc. The second disadvantage is that a bounding rectangular hyper-solid
must be known in advance. In some applications this may be difficult to arrange.

Straight sampling Monte-Carlo integration

Another way to integrate by random sampling uses the following (obvious) fact: the area under a
curve f(x) is exactly equal to the average height [f Cof f(x) on the interval [, b], times the length,
b —a, of the interval®. How can we estimate OJ @ Suppose we sample f(x) at random, choosing N
points in [a, b] with a random number generator. Then

N
afeg S fe)
and

b
Iaf(X)dx=(b—a) yo

Uncertainty of the Monte Carlo method
The statistical notion of variance lets us estimate the accuracy of the Monte Carlo method: The
variance in f(x) is

I o
Var() = [dfp() - I

where p(f) df is the probability of measuring a value of f between f and f + df. Statistical theory says
the variance in estimating [Jf [by random sampling is

Var H}%=%Var(f)

i.e., the more points we take, the better estimate of [Cwe obtain. Hence the uncertainty in the
integral will be of order

AETr) de:(b o gt DVar(f)D

and is therefore guaranteed to decrease as N2 .

4. That s, this statement defines (.

122 Monte Carlo method

Here is a simple Forth program that implements this scheme:
\ One-dinensi onal Monte-Carlo integration

(c) Copyright 1998 Julian V. Noble.
Permi ssion is granted by the author to
use this software for any application pro-
vided this copyright notice is preserved.

\ Usage: use(fn.nanme xa xb)nonte

\ Exanpl es:

\ use(FSQRT 10000 Oe 1l1le)nmonte FS. 6.67675E-1 ok
\ use(FSQRT 10000 0Oe 2e)nmonte FS. 1.88408E0 ok
\ F1 FDUP FSQRT F* ; ok

\ use(f1 0Oe 1l1le 1e-3)nonte FS. 3.97621E-1 ok

\ use(f1 0Oe 2e 1e-4)nonte FS. 2.27428E0 ok

MARKER - nti nt

\ Conditional definition of non-Standard words
undef i ned BL WORD FIND NP 0= ;

undefined prng [IF] include prng.f [THEN

undef i ned sf [IF] : sf sb DF ; [THEN]
undefined f22 [IF] : f*2 FDUP F* ; [THEN]
undefined ftuck [IF] : ftuck FSWAP FOVER ; [THEN]

undefined wuse([IF]

\ Vectoring: for using function names as argunents
©ouse(’ \ state-smart ' for syntactic sugar
STATE @ |F POSTPONE LI TERAL THEN ; | MVEDI ATE
NOCP CONSTANT ' noop
V: CREATE 'noop , DOES PERFORM ; \ create dummy def’'n
"dfa ' BODY ; (—data field address)
defi nes "dfa STATE @
I F POSTPONE LI TERAL POSTPONE !
ELSE ! THEN ; | MVEDI ATE
\ end vectoring [THEN]

\ Program starts here
\ Data structures
v: fdumy
1000 VALUE Nnmax
0 VALUE Npoints
0.1 seed 2!
FVARI ABLE xa FVARI ABLE xb-xa
FVARI ABLE Var

FVARI ABLE
\ Actions
DX (f: —x = xa + xi*[xb-xa]) \ guess a new poi nt

prng xb-xa F@ F* xa F@ F+ ;

initialize (xt n = (f: xa xb error —integral)
TO Nmax
defines fdummy
5 TO Npoints
FOVER F- xb-xa F! xa F!

PHYS 551 Computational Methods of Physice 123
Chapter 7 Numerical quadrature

f0.0 <f> F! f0.0VarF!
50 DO x fdumy FDUP
<> F@ F+ <f>F!
fr2 Var F@ F+ Var F!
LOOP
<f> F@ Npoints s>f F/ <f> F!
Var F@ F@ "2 Npoints s>f F* F- VarF! ;

New_poi nt
x fdunmy
<f>F@ ftuck F- ftuck (f: f-<f> <f> f-<f>)
Npoi nts 1+ DUP TO Npoints \' n=n+1
s>f F/ F+ <f> F! \ <f'> = <f> + (f-<f>)/(n+l)
Npoi nts DUP 1- s>f F*
s>f F/ (f: n*[f-1"2/[n+1])
Var F@ F+ Var F! \ Var’ = Var + n*(f-)"2/(n+1)
)nont e (xt - -) (f: xa xb error - - integral)
initialize
BEG N Npoi nts Nmax <
WH LE New_poi nt

REPEAT F@ xb-xa F@ F* ;

%error (f: —error)
Var F@ FSQRT Npoints s>f F/
<f> F@ FABS FDUP FO>
I F FI 1.e2 F*
ELSE ." toocloseto 0" THEN ;

It is easy to see that the Monte-Carlo method converges slowly. Since the error decreases only as

N , whereas even so crude a rule as adding up rectangles has an error term that decreases as N
what is Monte Carlo good for? Monte Carlo methods come into their own for multidimensional
integrals, where they are much faster than multiple one-dimensional integration subroutines based
on deterministic rules. The reason they are so much faster is that, say, using Simpson’s rule with n
points in each of ten dimensions we must take roughly N = n'0 points, but the accuracy is of order nt= N
That is, the uncertainty using a compounded quadrature formula in many-dimensional integration

can be more slowly decreasing than that from simple Monte Carlo integration.

The preceding programs are easily generalized to an arbitrary number of dimensions. (The generali-
zation is left as an exercise.)

124 Numerical quadrature rules

4. Numerical quadrature rules

In the preceding sections we examined two schemes for computing the integral of an arbitrary
function: the first, a deterministic method, involved adding up the areas of rectangles that lay entirely
below or entirely above the given curve, in order to derive lower and upper bounds for the area. This
method is more of an existence proof than a useful algorithm. But it leads us to consider possible
improvements. The main idea is to approximate the given function by a polynomial over some
integral, then to integrate that polynomial exactlyS.

Trapezoidal rule
The simplest polynomial is the straight line joining the points HO , foEbnd Hl , i H:

x—xl X_XO
&) =fo— * i —
Xo X1 X1~ X
whoseintegralis

Xy 1 bet
dx = 5 [—xgHd +fiH= dx .
ij ¥0x) dx = 5 B = oo+ fi] IXO x) dx

Since this is the area of the trapezoid bounded by the straight line y(x) , the x-axis and the vertical
lines at xy and x; , this quadrature formula is called the trapezoidal rule. Normally we take the points

close together; to employ the trapezoidal rule over a finite interval we simply add the areas from the
sub-intervals. In practice this means we take equally spaced intervals and write

b 3
a 1,0 nh
[@ =k horitht sy f0- G
where h is the spacing between successive points.

A similar approach can be taken using a quadratic approximation to equally-spaced function values:

DC_Xl DDC_XzD D(_XO DDC_X2|:| EIX_XO DEIX_XID
() = fo G—_ 00 O+ fi O 03 O+ f 0 HE; 0
o ~Xigifo ~ 220 Of~Xof1 ~ %20 cf2 = X2 ~ %10

whose integral is

" _he o dh R
Ixo y(X) dx - 3fO + 3 fl + 3f2 - Ixo f(X) dX,
giving the extended Simpson’s rule

b 0 2 1,0 o
L flx)dx = h %fo"‘%fﬁ'gfz"‘ +%f2n—l+§f2ng_ %JM)(E)~

5. Of course we need not be limited to polynomials—trigonometric functions are also an acceptable way

PHYS 551 Computational Methods of Physice 125
Chapter 7 Numerical quadrature

Numerical quadrature rules employing equally-spaced abscissas, including the endpoints of the
interval, are generically known as closed Newton-Cotes rules®. Of course it would be perfectly feasible
to devise rules with equally-spaced abscissas that omit the endpoints—these are the open Newton-
Cotes formulas. Recipes that include one or the other endpoint but not both are mixed Newton-Cotes
rules. Open, and mixed Newton-Cotes rules are only of minor interest since the applications for which
they are optimal occur but rarely—in fact I have never seen one.

Gaussian quadrature
Open, closed or mixed Newton-Cotes formulae represent the integral of a function as

ky+n

b
[fe)dx =y f+ku

k=k,

where the points are equally spaced, and the weights w, are chosen so that polynomials of a given

degree are integrated exactly (that is, so that the function is represented by a truncated sum of such
polynomials). Since there are n free parameters w;, , we can in general fit a polynomial of order

n — 1 to the function. What if we relaxed the condition that the points be equally spaced? Then we
would be moved to represent an integral by

b n
Jaxfe) =y fEfu,
k=1

where the n points §; lie in the interval [a, b] . Now we have twice as many free parameters to work

with, hence can fit a polynomial of order 2n =1 . It turns out to be convenient to transform the
interval to [-1, 1] via

Then to determine the parameters §,, and w,, for this interval we might think of solving a rather

horrible set of polynomial equations. Fortunately there is a simpler method: consider integrals of the
form

1
=] de0f-8Hi- - B-5f
Manifestly, I = 0 when ¢(t) is any polynomial of order n — 1 (recall the formula is supposed to be exact

for all polynomials of degree up to and including 2n — 1).

However, the polynomial of n’th degree that is orthogonal to all polynomials of lesser degree on the
interval [-1, 1] is the Legendre polynomial P, (t) ; that is, we may immediately identify the points

6. See, e.g., R. Hamming, Numerical Analysis for Scientists and Engineers ()

1206 Numerical quadrature rules

& as the roots of P, (§) = 0. Next, how do we calculate the weights w; ? We note that for any function

the approximate integral is

1 n df n
d = Ow, = ;
I—1 fl) = R > fiowe
k=1 k=1
now suppose we make the Lagrangian polynomial approximation to f(x):

— Pn(x)
f(X) -~ kZI fk (X _ Ek) P! n(Ek) .

This is a polynomial of n — 1’st degree that passes through all n ordinates f, , hence the integral of it
must be exact. That is, we can identify the weights as
P, ()
w, = [dx
¢ I—l (=& P (&)

For, say, n = 3 we find the roots and weights (recall P3(x) = %x3 - % x)

Xy = Vs wy = %

XO=O WO:8/9.

Singular integrals
Occasionally we must evaluate singular integrals numerically. One example is the Cauchy principal
value integral defined by

df 0% ¢ D
t0/,J"d f() = lim 5 0 dxf(—X)+I dx f(X)
—XO £_>0+ a X = Xp Xg~— € X_XOD

W. J. Thompson has suggested7 numerically evaluating the Cauchy principal value integral by
rewriting it in the form

b Xy~ A b X+ 4
o=
a a EARAY LAY
where A is a convenient finite number. The principal value integral

f(x + xO)

,ff " dc - f(x) = of[yii dxgi—x)

only involves the odd part of g(x) and hence may be evaluated via Taylor’s series employing only odd
derivatives.

7. Computers in Physics 12 (1998) 94.

PHYS 551 Computational Methods of Physice 127
Chapter 7 Numerical quadrature

As it is usually inconvenient to compute high-order derivatives by interpolation or explicitly, as
Thompson advocates, we employ a simpler scheme based on even-order Gauss-Legendre quadrature.
First scale out the parameter A :

+A +1
y g _ g(xB)
I(4) = ./’I_A dx Pl .fI_I dx ar
Then subtract g(0) from the integrand to get
L) - g0) ¢ v
I0) = [& &8 =y 2 oF A0
() 'I._l X Tgl En ggn |:|

where the &

quadrature formula®. An even-order formula is preferable to an odd-order one because the abscissas

and w,, are respectively the abscissas and weights of the € (2N) Gauss-Legendre

n

do not include the point x = 0. For example, the results for the integral

+ X IN df
e _ _ w, -
2 [de = 211450175075 = ZI 7 o Fl= S

are given in the Table below:

Numerical Evaluation of Principal Value Integral

2N Sn

2 2.11297772844928
4 2.11450171810538
6 2.11450175075134

Similar ideas can be applied to other types of singular integral. For example, the integral

_ o @ 1P)+ =)
D= de2fsgf de Bl

x| x|

is integrable if f(x) Z0and Rea < 1.

Gaussian integration with weight functions
A final remark on Gaussian quadrature: sometimes we need to evaluate integrals of the form

b
I = [dxot))

where the function 0(x) is a known “weight function”. For example, integrals such as

[: dx ¢ f) and [: dxe™ f(x)

8. Handbook of Mathematical Functions, ed. by M. Abramowitz and I. Stegun (National Bureau of Stand-
ards, Washington, DC, 1964) p. 916.

1286 Adaptive methods

often arise in evaluating the amplitudes for certain quantum mechanical transitions. The same
technique we employed to derive the sample points in Gauss-Legendre integration (that is, the zeros
of Legendre polynomials) we see that a formula such as

n

Io dee™fl) = H wi fHH

k=1

dictates that the sample points be the zeros of the n’th—order Laguerre polynomial; whereas the
appropriate abscissas for

[dxe™ f) = 2 wffg

are the zeros of the n’th order Hermite polynomial. Other weight functions and other intervals lead
to various forms of Gauss-Chebyshev integration.

A change of variable lets us relate one case to another. For example, suppose we want abscissas and
weights for the weight function In (1/x) on the interval [0,1]. Letting x = ¢ * we get

n

1 (<]
—IO dxInx f(x) = IO du e—”ufH_”E= z wy, & fH_E"EE z Sk ﬂ%‘k%

n
k=1 k=1
where §;, and w, are the points and weights of Gauss-Laguerre integration; then we immediately
identify the points and weights appropriate to logarithmic integration as
)\k = e_zk
S = Ek wy, .

5. Adaptive methods
Obviously, to minimize the execution time of an integration subroutine requires that we minimize
the number of times the function f(x) has to be evaluated. There are two aspects to this:

* First, we must evaluate f(x) more densely where it varies rapidly than where it varies slowly. Algo-
rithms that can do this are called adaptive.

* Second, we evaluate f(x) as few times as possible—the ideal would be never to discard a value of
f(x) once it has been evaluated®.
To apply adaptive methods to Monte Carlo integration, we need an algorithm that biases the sampling
method so more points are chosen where the function varies rapidly. Techniques for doing this are
known generically as stratified sampling'® or importance sampling'’. The difficulty of automating

9. However this may not be the most efficient way to proceed, as we shall see below.
10.].M. Hammersley and D.C. Hanscomb, Monte Carlo Methods (Methuen, London, 1964).
11. J. W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley Publishing Company,

PHYS 551 Computational Methods of Physice 129
Chapter 7 Numerical quadrature

advanced sampling techniques for general functions puts adaptive Monte Carlo techniques beyond
the scope of these lectures.

However, adaptive methods can be applied quite easily to deterministic quadrature formulae such as
the trapezoidal rule, Simpson’s rule, or Gaussian quadrature. Adaptive quadrature is both inherently
useful and illustrates a new class of programming techniques, so we pursue it in some detail.

Adaptive integration in one dimension

We now construct an adaptive program to integrate an arbitrary function f(x), specified at run-time,
over an arbitrary interval of the x-axis, with an absolute precision specified in advance. To make the
user interface as FORTRAN-like as possible, we invoke the integration function with several argu-

ments:
use(F.nane L.lim Ulim err)integral

Now, how do we ensure that the routine takes a lot of points when the function f(x) is rapidly varying,

but few when f(x) is smooth? The simplest method uses recursion 2.

Digression on recursive algorithms

We have so far not discussed recursion, wherein a program calls itself directly or indirectly (by calling
a second routine that then calls the first). Since there is no way to know a priori how many times a
program will call itself, memory allocation for the arguments must be dynamic. That is, a recursive
routine places its arguments on a stack so each invocation of the program can find them. This is the
method employed in recursive compiled languages such as Pascal, C or modern BASIC. Recursion
is of course natural in Forth since stacks are intrinsic to the language.

We illustrate with the problem of finding the greatest common divisor (gcd) of two integers. The
ancient Greek mathematician Euclid devised a rapid algorithm for finding the gcd13 which can be
expressed symbolically as

Cd(mn):ljn ifTL:O
§ ’ Eng (n, mmod n) otherwise .

That is, the problem of finding the gcd of m and n can be replaced by the problem of finding the ged
4,

of two much smaller numbers. A Forth subroutine that does this is’
GCDg u v —gcd) _ _ _
’DUP 0> \ stolglng criterion

| F TUCK MOD RECUR THEN ;

Reading, MA, 1988) p. 406.
12. See, e.g., R. Sedgewick, Algorithms (Addison-Wesley Publishing Company, Reading, MA, 1983), p. 85.
13. R. Sedgewick, op. cit., p. 11.

14. Forth does not permit a subroutine to call itself by name: when the compiler tries to compile the self-
reference, the definition has not yet been completed and so cannot be looked up in the dictionary. In-
stead, we use RECURSE to stand for the name of the self-calling word.

120 Adaptive methods

Here is an example of GCDin action, using the debugger from Win32Forth to display the steps:

784 48 dbg gcd [2] 784 48

code ?DUP —> [3] 784 48 48
code 0> — [3] 784 48 -1
code IF — [2] 784 48
code TUCK —> [3] 48 784 48
;. MD — [2] 48 16
. GCD — [2] 48 16
code ?DUP — [3] 48 16 16
code 0> — [3] 48 16 -1
code IF — [2] 48 16
code TUCK — [3] 16 48 16
;MDD — [2] 16 0O
: GCD —[2] 16 O
code ?DUP — [2] 16 O
code 0> — [2] 16 0O
code IF — [1] 16
code ; — ok

Recursion can get into difficulties in Forth by exhausting the data stack or the return stack. Since

the stack in GCD never contains more than three numbers, only the return stack must be worried
about in this example.

Recursive programming possesses an undeserved reputation for slow execution, compared with
nonrecursive equivalent programsls. Compiled languages that permit recursion —e.g., BASIC, C,
Pascal— generally waste time passing arguments to subroutines, i.e. recursive routines in these

languages are slowed by parasitic calling overhead. Forth does not suffer from this speed penalty, since
it uses the stack directly.

Nevertheless, not all algorithms should be formulated recursively. A disastrous example is the
Fibonacci sequence

F0=O’ FI:I’ Fnan—1+Fn—Z

expressedreaursivay in Forth &

15. For example, it is often claimed that removing recursion almost always produces a faster algorithm. See,
e.g. Sedgewick, op. cit., p. 12.

PHYS 551 Computational Methods of Physice 151
Chapter 7 Numerical quadrature

FI B (:n- - Fn)
DUP 0> NOT
= DROP 0 EXIT THEN

DUP 1 =

I F EXIT THEN \'n>1

1- DUP 1- (--n1 n2)
RECURSE SWAP (- - F[n-2] n1)
RECURSE + ;

This program is vastly slower than the nonrecursive version below, that uses an explicit DOloop:

FI B (:n- - Fn])
0 1 ROT (:01n)
DUP 0> NOT
IF 2DROP EXIT THEN
DUP 1 =
IF DROP NP EXIT THEN
1 DO TUCK + LOOP PLUCK

Why was recursion so bad for Fibonacci numbers? Suppose the running time for F, is T,, ; then we
have

Tn:Tn—I + T—Z T

where Tis the integer addition time. The solution is

m+vsd O
L=t O0-1l0
M O 0O

That is, the execution time increases exponentially with the size of the problem. The reason for this
is simple: recursion managed to replace the original problem by two of nearly the same size, i.e.
recursion neatly doubled the work at each step!

The preceding analysis of why recursion was bad suggests how recursion can be helpful: we should
apply it whenever a given problem can be replaced by—say—two problems of half the original size,
that can be recombined in n or fewer operations. An example is Mergesort, where we divide the list
to be sorted into two roughly equal lists, sort each and then merge them. In such cases the running
time is given by

Tn = Tn/Z + Tﬂ/l tn= ZT‘n/Z +tn
for which the solution is'°

T,=nlog (n)

16. To see this, let n=2% and write T,/n=U, . Then U,=U,_; + 1.

152 Adaptive methods

In fact, the running time for Mergesort is comparable with the fastest sorting algorithms. Algorithms
that subdivide problems in this way are said to be of divide and conquer type.
End of Digression

Adaptive integration can be expressed as a divide and conquer algorithm, hence recursion can
simplify the program. In QuickBasic”, a language that permits recursion, we have the program:
DECLARE FUNCTI ON dunmy! (x!)

DECLARE FUNCTI ON si npson! (a!, b!)

DECLARE FUNCTION integral! (a!, b!, e!)
" Main program PRINT integral (0, 1, .001)

FUNCTI ON dunmy (x)

dumy = x * SQR(x)
END FUNCTI ON

FUNCTI ON integral (a, b, e)
c=(a+b)/ 2
old.int = sinpson(a, b)
new. i nt = sinpson(a, c) + sinpson(c, b)
IF ABS(old.int - new.int) < e THEN
integral = (16 * newint - old.int) / 15
ELSE integral = integral(a, ¢, e/ 2) +integral(c, b, e/ 2)
END I F
END FUNCTI ON

One is not obliged to use Simpson’s rule on the sub-intervals—any favorite algorithm will do.

A Forth version of this program, using 3 point Gauss-Legendre quadrature, is given at the end of this
chapter. In the Forth version we replaced) | NTEGRAL by RECURSE inside the word) | NTEGRAL.
As noted (in a footnote) above, Forth normally does not permit words to refer to themselves thus
avoiding unintentional recursion. Hence a word being defined remains hidden from the dictionary
search mechanism (compiler) until the definition is terminated by a concluding semicolon (;). The
word RECURSE unhides the current name, and compiles its execution token'’ in the proper spot.

Disadvantages of recursion in adaptive integration

The main advantage of a recursive adaptive integration algorithm is its ease of programming, The
recursive program is shorter than the non-recursive one. For any reasonable integrand, the stack
depth grows only as the square of the logarithm of the finest subdivision, hence never gets too large.

17. An “execution token” can be an index into a table or an address pointing to actual code. In Forth the
execution token is what the word EXECUTE uses to execute the corresponding subroutine.

PHYS 551 Computational Methods of Physice 125
Chapter 7 Numerical quadrature

However, recursion has several disadvantages when applied to numerical quadrature:

e The recursive program discards values of the function, hence may make more function calls than
a nonrecursive method.

* It would be hard to nest the function) | NTEGRAL for multidimensional integrals.

» The recursive program can run out of stack space, with unpredictable results!®,

Several solutions to these problems suggest themselves:

e We can eliminate recursion from the algorithm, thereby maintaining control of memory usage.

* We can reduce the number of function evaluations with a more precise quadrature formula on
the sub-intervals.

* We can use “open” formulas like Gauss-Legendre, that omit the endpoints.

Adaptive integration without recursion
The chief reason to write a non-recursive program is to maintain control of memory. We should also
like to minimize the number of points x, in [A, B] consistent with the desired precision, evaluating

f(x) once only at each x,, . This will be especially worthwhile when f(x) is costly to evaluate.

To minimize evaluations of f(x), we save values f, = f(x,) that can be re-used as we subdivide. The
best place to save the f, ’s is some kind of stack or array. Moreover, to make sure that a value of

f(x) computed at one mesh size is usable at all smaller meshes, we must subdivide into equal
sub-intervals; that is, the points x,, must be equally spaced and include the end-points. Gaussian

quadrature is thus out of the question since it invariably (because of the non-uniform spacings of the
points) demands that previously computed f, ’s be discarded because they cannot be re-used".

The simplest quadrature formula that satisfies these criteria is the trapezoidal rule. This is the formula
used in the following program.

To clarify what we are going to do, let us visualize the interval of integration, and mark the mesh
points where we evaluate f(x) with | :

A‘ ‘B

Xo X1

18. Actually the results are all too predictable: a machine crash, or in a protected-mode system such as MS
Windows® or Linux, freezeup of a running task.

19. However, a Gaussian rule may actually lead to fewer total evaluations of f(x) despite throwing points
away, as we shall see below.

154 Adaptive methods

We now save (temporarily) Iy and divide the interval in two, computing I' ; and I; on the halves.

"] | °
X0 ‘ ‘ X1 ‘ X2
X f(x) sub-integral error
Xo fo
X1 fi I" o €/ 2
X2 f2 Il e/ 2

This will be one fundamental operation in the algorithm.

We next compare I' ; +1; with I, . If the two integrals disagree, we subdivide again, as shown below

(we imagine two steps have taken place):

A ‘ ‘ B

XO ‘ ‘ Xl ‘ X2 ‘ X3 ‘ X4

X f(x) sub-integral error
X0 fo

X1 fi lo €/ 2
X3 fo I €/ 4
X3 fs I €/ 8
X4 f4 I3 €/ 8

Now suppose the last two sub-integrals (I; +1,") in the last step agreed with their predecessor (I,);

we then accumulate the part computed so far, and begin again with the (leftward) remainder of the
interval, as shown on the next page.

The program for non-recursive integration using the trapezoidal rule is given at the end of the chapter.
The nonrecursive program requires substantially more code than the corresponding recursive version.
This is the chief disadvantage of a nonrecursive method?’.

For completeness I have included a nonrecursive version of the adaptive 3-point Gaussian routine
as the third program at the end of the chapter. It requires less memory than the trapezoidal rule
because it does not save values of the function.

20. The memory usage is about the same: the recursive method pushes limits, etc. onto the fstack.

PHYS 551 Computational Methods of Physice 125

Chapter 7 Numerical quadrature
A ‘ ‘ done B
X0 X1 X2
X f(x) sub-integral error
X0 fo
X1 fq lo €/ 2
X3 fo I e/ 4

Comparison of trapezoidal and 3-point Gaussian methods

Although the trapezoidal rule was employed because, ab initio, it would seem to require fewer function
evaluations (because it never discards any values) than—say—a Gaussian quadrature formula, it is
useful to check whether this assumption is actually borne out in practice.

Here are the results of high-precision integration of (integrable) functions with end-point singulari-
ties:

\ Results of adaptive 3-point Gaussian:
12 set-precision ok
use(fsqgrt Oe le l1le-8)integral 609 function calls ok
fs. 6.66666666670E-1 ok

f1 FDUP FSQRT F* ; (f: x —x*1.5) ok
use(f1 Oe l1e le-8)integral 165 function calls ok
fs. 3.99999999994E-1 ok

\ Results with adaptive trapezoidal rule:
use(fsqgrt Oe le l1le-8)integral 14377 function calls ok
fs. 6.66666666667E-1 ok

f1 FDUP FSQRT F* ; (f: x —x~1.5) ok
use(f1 Oe 1e le-8)integral 8925 function calls ok
fs. 4.00000000000E-1 ok

In other words, the 3-point Gaussian adaptive algorithm uses 23.6 times fewer function calls (hence

for a complicated function, is faster by that factor) to evaluate the integral of x7 at its singularity
than the trapezoidal rule, despite discarding points! The factor is even more severe—54.1—for the

. 7
less singular function x””.

. . o . .
Now let’s really stress the algorithms by integrating x ”* near the singularity:

\ Adaptive 3-point Gaussian
f2 fsqgrt 1le fswap f/ ; ok
use(f2 le-14 l1le 1l.e-6)integral 5889 function calls ok
fs. 1.99999979913E0 ok

126 Adaptive methods

\ Adaptive trapezoidal rule
use(f2 le-2 le 1le-6)integral 5329 function calls ok
fs. 1.80000E0 ok
use(f2 le-4 1le 1le-6)integral 22575 function calls ok
fs. 1.98000E0 ok
use(f2 le-6 le le-6)integral 76683 function calls ok
fs. 1.99800E0 ok

The first attempt to duplicate the 3-point Gaussian result (using the trapezoidal program with a very
small lower limit) froze the program into what seemed like an endless loop (on a very fast machine).
The best I was able to do was the three cases shown above, which are not terribly satisfactory.

The preceding tests offer several morals:

* Assumptions that seem too obvious to be questioned may turn out incorrect. This holds true in
all aspects of existence, but especially when designing algorithms. It is therefore worthwhile to
propose alternate hypotheses and test them honestly.

» Every aspect of a program must be tested. Design stringent tests that will make the program fail.
We often learn more from failure than success.

* In these particular examples, it would be worthwhile to factor out the singular behavior and inte-
grate it explicitly—one method uses Gaussian quadrature with singular weight functions.?!

21. See, e.g., Abramowitz and Stegun, p. 888ff, for a discussion of Gauss-Chebyshev formulas.

PHYS 551 Computational Methods of Physice
Chapter 7 Numerical quadrature

\ Integration by recursion - - an illustration of the concept
\ Uses 3 point Gaussian integration

FALSE [F]
Exanpl es:
use(fsqgrt Oe le le-4)integral fs. 6.66666744641E-1 ok
use(fsqgrt Oe le le-6)integral fs. 6.66666670150E-1 ok
fl FDUP FSQRT F* ; ok

use(f1 Oe 1le le-4)integral fs. 3.99994557189E-1 ok
use(f1 Oe 2e le-6)integral fs. 2.26274169632E0 ok

[THEN]

MARKER -ri nt
undefi ned BL WORD FIND NIP 0= ;

\ vectoring: for using function names as argunents, or fwd recursion

undefined use([IF]

use(\ state-smart ' for syntactic sugar
STATE @ |F POSTPONE LITERAL THEN ; | MVEDI ATE
" NOOP CONSTANT ' noop
V: CREATE ’'noop , DOCES> PERFORM ; \ create dummy def’'n
"dfa ' BODY ; (—data field address)
def i nes "df a STATE @
I F POSTPONE LI TERAL POSTPONE !
ELSE ! THEN ; | MVEDI ATE

[THEN]
\ end vectoring
\ define FVALUEs
undef i ned FVALUE [1F]
FVALUE CREATE Oe F, DCES> F@ ;

FTO "dfa STATE @
I F POSTPONE LI TERAL POSTPONE F!
ELSE F! THEN ; | MMEDI ATE
[THEN]
\ points and weights for 3 point Gauss-Legendre integration
8e 9e F FCONSTANT w0
5e 9e F/ FCONSTANT wl
9e 15e F/ FSQRT FCONSTANT x1
x1 FNEGATE FCONSTANT -x1
v: fdummy
FVALUE dx FVALUE <x>
scal e (f: xa xb - -)
FOVER F- F2/ [xb-xa]/ 2)

FSWAP FOVER F+
FTO <x> FTO dx ;

(f:
(f: [xb-xa]/2 [xat+xb]/2)

VARI ABLE Nti nmes \ count of function eval uations
yint (f: xa xb —gauss_int) \ 3 point Gauss-Legendre
scal e
<X> f durmmy wo F* \ f(0) * wO
x1 dx F* <x> F+ fdumy \ f(x1)

-x1 dx F* <x> F+ fdummy F+ wl F* \ [f(-x1)+f(x1)] * wi
F+ dx F* 3 Ntinmes +! ;

127

FVALUE err

integral)

128 Adaptive methods
FVALUE ol dI FVALUE new FVALUE finl
FVALUE xa FVALUE xb FVALUE xc
juggl e (f: —xa xc err/2 xc xb err/2)
xa xc err F2/ xc FOVER xb FSWAP ;
storel finl F+ FTO finl ;
adaptive (f: xa xb err —)
FTO err FTO xb FTO xa
xa xb F+ F2/ FTO xc
xa xb)int FTO ol dl
Xxa xc)int xc xb)int F+ FTO new
neWl oldl F FDUP FABS err F<
IF 63e F/ new F+ storel
ELSE FDROP juggle RECURSE RECURSE THEN
)integral (xt--) (f: xaxberr - -
defines fdumy \ pass function xt to fdumy
Oe FTO finl \ initialize integral
0O Ntines ! \ initialize count
adaptive finl

Ntines @

." function calls" ;

PHYS 551
Chapter 7

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

Adaptive integration using trapezoidal rule

wi th Ri chardson extrapol ati on
Integrate a real function fromxa to xb

(c) Copyright 1998 Julian V. Noble.

Perm ssion is granted by the author to
use this software for any application pro-
vided this copyright notice is preserved.

Usage: wuse(fn.name xa xb err)integral
Exanpl es:
use(fsgrt Oe 1e 1le-3)integral
use(fsgrt Oe 2e 1le-4)integral
fl FDUP FSQRT F* ; ok
use(f1 0Oe 1l1le 1e-3)integral fs.
use(f1 0Oe 2e 1le-4)integral fs.

This is an ANS Forth program requiring:
The FLOAT and FLOAT EXT word sets
Envi ronnent al dependenci es:

Assumes i ndependent floating point stack
Uses a FORmul a TRANsl| ator for clarity

MARKER -i nt

\

undefined f" [IF] include ftranllO.f
undef i ned sf [ITF] : sf sSD DF ;
undefined f0.0 [IF] 0.0E0 FCONSTANT

undefined float_len [IF]

Non STANDARD wor ds:
undefi ned BL WORD FIND NIP 0= ;

undefined larray [I|F]

— r m m e m m m —m —m — — — —

| ong ;
larray (len data_size — CREATE 2DUP
_len (base_addr —Ilen) \ determine length of an array

CELL+ @ ; .
OVER _len OVER <= OVER O0<
OVER @ * + CELL+ CELL+ ;

THEN]
larray create a a one-dinensional array

as in 20 1 FLOATS 1larray A{

} deref erence a one-di nensi onal array
as in Al | } (base.adr —base.adr + offset)

V: define a function vector
defines (I MVEDI ATE) set a vector,
v: dunmy
t est (xt —) defines dumy
dumy
35’ * test . 15 ok
use((1 MVEDI ATE) get the xt of a word

1 FLOATS CONSTANT

Computational Methods of Physice
Numerical quadrature

— e e —

6. 666659e-1 ok
1. 885618e0 ok

4.00000017830E- 1
2.26274170358E0

Programmed by J.V. Noble (from*“Scientific FORTH by JVN)

ANS Standard Program —version of Cctober 15th, 1998

[THEN]

[THEN]

[THEN]
float_len [THEN]

(base_adr indx —adr[indx]

OR ABORT" | ndex out of

the vectoring words are included in ftranllo.f

129

140 Adaptive methods

\ Data structures
FVARI ABLE ¢c43 4 SF 3 SF F/ c43 F!
20 CONSTANT Nmax

Nmax | ong float_Ien larray x({
Nmax | ong float_Ien larray Ef
Nmax | ong float_Ien larray f{
Nmax | ong float_Ien larray |{
0 VALUE N

0 VALUE NN

FVARI ABLE ol dI
FVARI ABLE finl
FVARI ABLE deltal

\ Begin program

)int. ((n— TONN \ trapezoidal rule
f* (f{nn} + f{nn_1-}) * (x{nn} - x{nn_1-}) *“ F2/
I{ nn 1- } F ;
v: dunmy \' dummy function name
VARI ABLE Nti nmes
initialize (xt =3 (f: xa xb eps —integral)
defines dumy
1 TON EfO}F X 1}F X 0} F
f* £{0} = dumy(x{0}) *
fr {1} = dumy(x{1}) *°
1)INT fo.0 finl F!
2 Ntinmes !
check.n
N [Nmax 1-] LITERAL ABORT" Too many subdi vi sions!"

E2 E N 1-} DPP F@ F2 Flo;

}down (adr n OER @ R } DUP R@ + R MOVE
nove. down E{f N 1- }down

x{ N } down

f{ N }down ;
X' f" x{N} + x{N_1-} “ F2/ x{ N} F!

f* f{Nt = dumy(x{N}) *
1 Ntinmes +!

N+1 N 1+ TON ; : N2 N2 - TON ;
subdi vi de

check.n E/ 2 nove. down

f* oldl = I1{N1-} *©

X’ N)int N 1+)int ;

conver ged? (f: 2 (—=f)
f*" I {N + I{N1-} - oldl *
FDUP deltal F! FABS
E{ N1- } F@ F2* F

PHYS 551 Computational Methods of Physice 141

Chapter 7 Numerical quadrature
i nterpol ate f* finl = deltal * c43 + oldl + finl ;
)integral (f: xa xb err —I[xa,xb]) (xt =
initialize
BEGN NO> WHLE
subdi vi de
conver ged? N+1 I F interpolate N2 THEN

REPEAT finl F@ Ntinmes @ . ." function calls"

142 Adaptive methods

Adaptive integration using 3 point Gauss-LlLegendre rule
wi th Richardson extrapol ation

(c) Copyright 1998 Julian V. Noble.
Permi ssion is granted by the author to
use this software for any application pro-
vided this copyright notice is preserved.

— e e —

\

\

\

\

\

\

\

\

\ This is an ANS Forth programrequiring:

\ The FLOAT and FLOAT EXT word sets

\" Environnental dependenci es:

\ Assumes i ndependent floating point stack
\ Uses a FORmul a TRANsl| ator for clarity

\ Usage: wuse(fn.name xa xb err)integra

\ Exanpl es:

\ 12 set-precision ok

\ use(fsgrt Oe le 1e-8)integral cr fs. 609 function calls
\ 6. 66666666670E-1 ok

\
\
\
\

x?1.5 fdup fsqrt f* ; ok
use(x"1.5 Oe 1le 1le-8)integral cr fs. 165 function calls
3.99999999994E-1 ok
MARKER -i nt
needs ftranllo0.f
needs arrays.f

FALSE [F]
Non STANDARD wor ds:
larray create a a one-di nensional array
Ex: 20 1 FLOATS 1larray A{
} deref erence a one-di nensi onal array

Ex: A{ | } (base_adr —base_adr + offset)

Vectoring words included in ftranllO.f

V. define a function vector
Ex: v: dunmy
defines set a vector
Ex: " * defines dummy 7 2 dummy . 14 ok

t est (xt —) defines dumy dumy
35’ * test . 15 ok
use(get the xt of a word
[THEN]

\ points and weights for 3 point Gauss-Legendre integration
8e Qe F/ FVARI ABLE w0 w0 F!
5e Qe F/ FVARI ABLE w1l wl F!
3e b5e F/ FSQRT FCONSTANT x1

\ Data structures

64e 63e F/ FVARI ABLE Cinterp Cinterp F
20 CONSTANT Nmax

1 FLOATS CONSTANT float_len

PHYS 551 Computational Methods of Physice

Chapter 7 Numerical quadrature
Nmax | ong float_Ien larray x({

Nmax | ong float_Ien larray Ef

Nmax | ong float_Ien larray |{

0 VALUE N

0 VALUE nn

FVARI ABLE ol dI
FVARI ABLE finl
FVARI ABLE deltal
FVARI ABLE dx
FVARI ABLE dxi
FVARI ABLE xi

\ Begin program

scal e (f: xa xb —)
FOVER F- F2/ (f: [xb-xa]/2)
FSWAP FOVER F+ (f: [xb-xa]/2 [xat+xb]/2)
xi F! FDUP dx F!

x1 F* dxi F' ;

VARI ABLE Ntines \ count of function evaluations
v: fdumy
int (n —) \ 3 point Gauss-Legendre

TO nn x{ nn1- } F@ x{ nn} F@ scale

f*" 1{nn_21-}=dx*(wO*f dumy(xi) +wl* (f dummy(xi +dxi) +f dummy(xi - dxi)))

3 Ntinmes +!

initialize (xt = (f: xa xb eps —integral)
defines fdumy
1 TON
EfO}F X 1}FR X 0} F
0 Ntines !
1)int
Oe finl F!' ;

check. n

N [Nmax 1-] LITERAL >

ABORT" Too many subdivisions!" ;
E/l2 E{ N 1-} DUWP F@ F2/ Flo;

} down (adr n
OVER @ R } DUP R@ + R MOVE

nove. down E{f N 1- }down
x{ N }down ;

N+1 N 1+ TON ;

N- 2 N2- TON ;

145

144
subdi vi de
check. n E/ 2
f* oldl = I{N_1-}
fr x{N} + x{N_1-}
N)int N 1+)in
conver ged? (f: 3 (

Adaptive methods

—f)

£ 1{N} + I{N_1-} - oldI

* Cinterp + oldl

(f: xa xb err —I[xa,xb]) (xt =

FDUP deltal F! FABS
E{ N1- } F@ F2* F
i nterpol ate f" finl = deltal
)integral
initialize
BEGN NO> WHLE
subdi vi de
conver ged? N+1
I F interpolate N2
REPEAT finl F@

Ntinmes @

THEN

function calls" ;

+ finl

