PHYS 551 Computational Methods of Physics 15
Chapter 2 Roots of equations

Roots of equations

1. Transcendental equations

A transcendental equation has the form
fx) =0,

where f(x) is a transcendental function rather than a polynomial or rational function (ratio of
polynomials). The latter can be solved by special methods that will be discussed in the following
Section.

A typical context in which it becomes necessary to solve one or several transcendental equations is
control theory. We often design governors with negative feedback: that is, we take part of the output,
reverse its sign and apply it to the input of a system. This can have a stabilizing effect if all goes as we
planned. The equation for such a system might be

x(t) = —ax(t),
where x(t) represents some deviation from normal operation. This equation is stable since its solution
represents damped perturbations:

x(t) =x(0) e ™" .
However, in practice control systems include time delays resulting from signal propagation, hence
can develop instabilities. That is, the preceding equation is actually

x(t) = —ax(t-T1)
where T represents the delay. The standard substitution x(t) = x(0) ¢ yields a transcendental
equation

AT =t

While it is obvious that no real and positive values of A can satisfy this equation, it is possible that
for some range of at there are complex roots with positive real parts. In that case the control system
could support oscillations that increase exponentially in magnitude—it would be wildly unstable!

There are several standard methods for finding a (or possibly, the) root of a transcendental equation
(which might have many roots or none). The simplest of these is Newton’s method. Under certain
conditions the methods of binary search and regula falsi are more stable and therefore to be preferred.
We discuss them in the order named.



16 Transcendental equatio ns

Newton’s method

Suppose f(x) is a differentiable function; then if x,, is near a root we have

f) = ) + & =) £ (g) + O By =2,

Setting f(x,) = 0 and solving for x, we have

. _ f(xn—l)
n n—1 f’ (Xn—1) )

That is, we iterate until the sequence @cné converges (or diverges).

Consider the problem of finding the square root of a positive number. In school we were taught
synthetic division. But Newton’s method offers a rapidly converging (and quite stable) iteration:

X -a=0
a—x,z1 a’x, + x,
Xpbl = Xy F = 2

" 2x,

Given a good initial guess the iteration converges extremely rapidly, as shown below for V2 .
a= 2, Xp = a’/?
Result

1.0000000000
1.5000000000
1.4166666667
14142156863
1.4142135624
1.4142135624

g b~ wWNPEF O3

The computation of square roots is built into virtually every numeric co-procesor and software
floating-point arithmetic package in modern use. Cube roots, however, are rarely included. The
following program uses Newton’s method to find cube roots.

Cube root of real nunber by Newton’s nethod
ANS conpati bl e version
(c) Copyright 1994 Julian V. Noble. Perm ssion is granted
by the author to use this software for any application provided
the copyright notice is preserved.

\

\

\

\

\

\

\' Algorithm

\ X" = (Nx"2 + 2x)/3
\

\ This code confornms with ANS requiring:
\ FLOAT and FLOAT EXT word sets

\
\
\
\

Envi ronnent al dependence:
assunes separate floating point stack

Non STANDARD wor ds: FTUCK



PHYS 551 Computational Methods of Physics 17
Chapter 2 Roots of equations

undef i ned BL WORD FIND NIP 0=
undefined FTUCK [IF] : FTUCK FSWAP FOVER ; [THEN|

'S (f: Nx - - x")
FTUCK  FDUP F* F/ FSWAP F2* F+ 3e0 F/

: conver ged? (f: x xx - -x)(--1)
F- FOVER F/ FABS 1.E-8 F<

: fcbrt ( f: N—N1/3)

FDUP FO< FABS (f: - - IN) (--1)
FDUP FSQRT ( f: - - Nx0)

BEG N FOVER FOVER x’ FTUCK  converged?

UNTI L

X’ I F FNEGATE  THEN

Below we see the tabulated results of this algorithm:
a=2, xp=vVa
Result

1.4142135624
1.2761423749
1.2601263691
1.2599210833
1.2599210499
1.2599210499

g~ wWwNPEFL O3

As our final example, consider how to compute the inverse of a number on a machine lacking a
division instruction (as did many early computers). We might think of trying to find the root of

ax—1=0
by Newton’s method, i.e.

ax, — 1

Xpel =Xp — a

but this is a mere tautology. The proper approach is to apply Newton’s method to
1

a-—=0
X
giving
= [ —ax [ .
Xn+1 ] an n

This iteration is unstable if, for a > 1 we choose x; > 1 or vice-versa. But it converges quite rapidly if
a proper starting value is chosen. If a > 1 a good choice is to find the leading bit, i.e. the leading power

of 2 contained in a, and take x, = 27" The results for inverting 3.0 are shown below:



18 Transcendental equatio ns

a=3, xp=0.25
Result

0.2500000000000
0.3125000000000
0.3320312500000
0.3333282470703
0.3333333332557
0.3333333333333

g~ WNPEFE O=SS

When the stability of Newton’s method is not known in advance (or is suspect), it is useful to choose
a method that is guaranteed to find a root because we know that a root lies in a definite interval of
the x-axis. Let us look first at binomial search, since its algorithm is easy to understand.

Binary search
We know that some interval, x; <x < xg, contains a root because f(x) changes sign when x goes from

x; — xg . The method begins with upper and lower bounds on x that capture the root. Next we look

at f(x) where x lies halfway between x; and xg . If f,,,, = f(x) has the same sign as f; =f(x;), the new

ew
left end of the interval becomes x. If the signs are opposite, x becomes the new right end of the interval.
The algorithm is done when left and right ends agree within some predetermined accuracy. In
pseudocode! the binomial search algorithm is

Binary search has the following virtues:

DECLARE FUNCTI ON dummy! (x!)

DECLARE FUNCTI ON bi nsrch! (a!, b!, eps!)
PRI NT bi nsrch(0!, 1!, .00001)

END

FUNCTI ON bi nsrch (a, b, eps)
fa = dumy(a)
fb = dumy(b)
DO UNTIL ABS(b - a) < eps
xp = (b +a) / 2
fx = dumy(xp)
IF fa* fx 0 THEN

fb = fx
b = xp
ELSE
fa = fx
a = xp
END | F

LOOP

1. Actually, in Microsoft QuickBasic®.



PHYS 551 Computational Methods of Physics
Chapter 2 Roots of equations

binsrch = (b + a) / 2
END FUNCTI ON

FUNCTI ON dunmy (x)
dumy = x - EXP(-x)
END FUNCTI ON

* the time it takes to achieve a given accuracy is predictable;

* itis guaranteed to find a captured root.

Regula falsi

Now we look at regula falsi, Latin for “rule of false approach”. Here the basic premise is:

* Assume the root lies in the interval (x; , xg) , and plot a straight line between the points (x; , f;)

and (xg, fg) -

* This line must intersect the x-axis somewhere in the interval, and we take that point, call it x’ ,

as our next guess.

o Ifx" is to the left of the root, adjust the interval accordingly, and the same if x' is to the right of

the root.

19

As the figure to the right shows, the straight line is supposed to approximate the curve f(x). The new

guess may be much closer to the root
than is the midpoint of the interval
(which was the next guess in bino-

mial search). Lo

A straight line in the x-y plane has the

analytic form

2.75
y=ax+b

where a and b are constants. The

intercept of the straight line with the 0.75

x-axis is gotten by setting y=0 and — : :
. —2.4 4 —0.4 .
solving for x: /

To determine a and b we use the two equations

szaXL+b
frR=axg+b

giving



20 Roots of polynomials

A R

and thus

Q= frx. — fLxg

fr =

Hybrid method

Sometimes regula falsi can be very slow—this happens if the function has a “knee” where the root is
located, and is flat on either side of the knee. To speed things up when this is the case it is useful to
insert a binary search step between the regula falsi steps, thereby giving rise to a hybrid approach. A
simple Forth program that implements this strategy is given at the end of the chapter.

2. Roots of polynomials

For a certain type of function, namely a polynomial with real or complex coefficients, specialized
methods have been devised that can find all the roots. The need to find the roots of polynomials
arises in several contexts. For example, suppose the solution to a problem we are interested in may
be expressed as an ordinary differential equation with constant coefficients,

d"x . d"
e g

a +.+agx = (1)

then as is well known, when f(t) = a ¢*, where A is a root of the equation
n n—1 —
a,\" +a,_ N +..+a =0,

the solution x(t) becomes infinite. Such equations arise when we treat structures as lumped masses
connected by springs. Designers of structures subject to external vibrations must be cognizant of the
resonant frequencies of their designs so that destructive loads do not develop.

The fundamental theorem of algebra asserts that a polynomial of degree n whose coefficients
ay,aj, ... ,a, are complex numbers has exactly n (complex) roots. The computation of these roots
can be quite tedious, particularly if two roots are close. Many authors have devised algorithms for
finding the roots of polynomialsz. Here we explain the Laguerre algorithm, which is based on the
following idea: write the polynomial as a function of the complex variable z in factored form.

2. See,e.g., F.S. Acton, Numerical Methods that Work (Math. Ass'n of America, Washington, DC, 1990)

for references to the literature.



PHYS 551 Computational Methods of Physics
Chapter 2 Roots of equations

df
pn(Z) = a0+alz +Cl212+ +anz” = a, (Z_ZI) (Z_zz) (Z_Zn) )

Then
log E)n(z)% = logBlnH+ loglk — 2,0+ loglk — 3,0+ ... +loglk — 2,0

so that

dlog [p,)| 1 1 1 .Y
= + + ...+ = =@,
dz 1T XY 2=z, by
and
2
_dlogp@l 1 1 o1 _we0 Pl
2 G-z) G-un)'  k-z) @O P

Now suppose we make the drastic assumption that for a given guess, 2,

=% = a
1=z, =b, k=2,...,n.

In that case we may write

I n-1
== +
G a b
1 n—1
H=— +
a* bt
and upon eliminating b between the two equations, find
_ n np n(z)
a

G = VoH-G)(-1)  p,’ () * p,R) VH - G)n-1)
A FORTRAN routine that implements this is’

SUBROUTI NE LAGUER( A, M X, EPS, POLI SH)
COVPLEX A(*), X, DX, X1, B, D, F, G H, SQ GP, GM &, ZERO
LOG CAL POLI SH
PARAMETER ( ZERO=( 0. , 0. ), EPSS=6. E- 8, MAXI T=100)
DXOLD=CABS( X)
DO 12 | TER=1, MAXI T

B=A( M+1)

ERR=CABS( B)

D=ZERO

F=ZERO

ABX=CABS( X)

DO 11 J=M 1, -1

3. W.H. Press, et al., Numerical Recipes (Cambridge U. Press, Cambridge, 1986), p. 263ff.



22

11

12

It is worth noting that this subroutine is rather long because it includes an optional iterative
procedure for polishing the root, controlled by the flag (i.e. the logical variable) POLI SH. This is
typical of languages like FORTRAN or C which exact a large run-time penalty for breaking

Roots of polynomials

F=X* F+D
D=X* D+B
B=X* B+A(J)
ERR=CABS( B) +ABX* ERR
CONTI NUE
ERR=EPSS* ERR
| F(CABS(B) . LE. ERR) THEN
DX=ZERO
RETURN
ELSE
G=D/' B
@=G'G
H=G2- 2. *F/ B
SQ=CSQRT((M 1) *(MH &2))
GP=G+SQ
GVEG SQ
| F(CABS(GP). LT. CABS(GV)) GP=GM
DX=M GP
ENDI F
X1=X- DX
| F(X. EQ X1) RETURN
X=X1
CDX=CABS( DX)
| F(1 TER GT. 6. AND. CDX. GE. DXOLD) RETURN
DXOLD=CDX
| F(. NOT. POLI SH) THEN
| F( CABS( DX) . LE. EPS* CABS( X) ) RETURN
ENDI F

CONTI NUE

PAUSE 'too nany iterations’
RETURN

END

procedures up into small, manageable modules.

Once we have found an estimate of a root, we can use Newton’s method to polish it. To accomplish
this expeditiously requires fast routines for evaluating a polynomial and its first derivative. We shall

discuss these below.

the polynomial by dividing out the factor (z —z;) , thereby producing a polynomial of degree n — 1.

The process of deflation can be carried out by synthetic division, that is, by writing

Suppose we have found a root” z; by Laguerre’s method—what next? Clearly the next step is to deflate

pn(z) = (Z - Z0) qn—l(z) + pn(zO) .

4.

...or a complex conjugate pair of roots if the coefficients g, are real.



PHYS 551 Computational Methods of Physics 25
Chapter 2 Roots of equations

The process of synthetic division’ yields both the quotient polynomial g,_;(z) and the remainder,

df
R = pn(zo) .

It is easiest to illustrate with an example. Consider 3x° — 14x° + x* — 5x +7. To divide it by
(x — 5) we arrange its coefficients in a tableau as shown below:

3 0 -14 1 -5 7
5 0 15 75 305 1530 7625
3 15 61 306 1525 7632

To the left we place the value 5, and below the leading coefficient (that is, as) we put 0. Now we add

the two entries in the first column to get 3. Next multiply by 5 and place the result in the second
column, and add these two entries to get 15. Proceeding rightward as indicated by the arrows, we
get the bottom row. The first five numbers are the coefficients of the quotient polynomial, that is,

go () = 3" + 15 + 615 + 306x + 1525,

and the last entry is the polynomial evaluated at x = 5. That is, we can accomplish deflation and
evaluation with a single subroutine.

Similarly, we can evaluate the derivative p’ ,(x) at a given value of x by applying synthetic division

to the quotient polynomial.

A Forth program to solve for the roots of well-behaved polynomials is found at the end of this chapter.

5. FE.S. Acton, Numerical Methods that Work (Math. Ass'n of America, Washington, DC, 1990), p. 181 ff.



24 Roots of polynomials

Regul a Falsi - - ANS conpatible version of Septenber 10th, 1997
- - tested with WnForth v. 3.5 on Septenber 10th, 1997
Finds roots of real transcendental functions by hybrid
secant/ bi nary search net hod
Usage exanpl e:
©F1 ( F: x - - [x-e**-x]) FDUP FNEGATE FEXP F- ;
USE( F1 %0 %1 %1.E-5 )FALSI 5.671432E-1 ok
Envi ronnent al dependenci es:
Separate floating point stack
ANS FLOAT and FLOAT EXT wordsets
ANS TOOLS EXT wordsets

(c) Copyright 1994 Julian V. Noble. Permission is granted

by the author to use this software for any application provided
the copyright notice is preserved.

MARKER - f al si

\ say "-falsi" to evaporate

o o o o o o e o e o o e

\ Vectoring wordset (conditionally conpile if not present)
DEFINED use( NP 0= [IF]

use( ’ STATE @ |F POSTPONE LI TERAL THEN ; | MVEDI ATE
V: CREATE ['] NOOP , DOES> @ EXECUTE ;
defi nes ( xt - -) " ( nane ) >BODY
STATE @ | F POSTPONE LI TERAL POSTPONE !
ELSE ! THEN ; | MVED ATE [ THEN|
\ Data structures
FVARI ABLE A f(xa)
FVARI ABLE B f (xb)
FVARI ABLE XA | oner end of interval

FVARI ABLE XB

FVARI ABLE EPSI LON

v: dunmy

\ End data structures

upper end of interval
pr eci sion
vectored function name

— - - - - -

X (F - -Xx) \ secant extrapol ation
\ F" XA+ (XA- XB) * A/ (B- A " ;
XA F@ FDUP XB F@ F- ( F: xa xa-xb)
A F@ BF@ FOVER F- F F* F+
DxX'> (R - - X)) \ binary search extrapol ati on
\ F' (XA +XB) /] 2 "

XA F@ XB F@ F+ F2/ ;
same-sign? ( F xy - -) (- -1f1) F* FO>

l'end (F x->-)
FDUP  dunmy FDUP ( F: - - x f[x] f[x] )
A F@ sane-sign?
IF AF XAF ELSE B F XB F! THEN

shrink x l'end <x'> lend ; \ conbi ne extrapol ati ons



PHYS 551 Computational Methods of Physics 25

Chapter 2 Roots of equations
initialize ( xt - -) ( F: lower upper precision - -)
epsilon F! XB F! XA F! \ store paraneters
defines dummy \ xt -> DUMW
XA F@ dunmy A F! \ conpute fn at endpts
XB F@ durmmy B F!
A F@ B F@

SAME- SI G\N?  ABORT" EVEN # OF ROOTS I N | NTERVAL!"

conver ged? (- -f)
\ F' ABS( XA - XB ) < EPSILON " ;
XAF@ XBF@ F- FABS EPSILON F@ F< ;
)falsi ( xt - -) ( F: upper lower precision - -)
initialize

BEG N shrink converged? UNTI L
<X’ >



26

Roots of polynomials

\ Laguerre nmethod for finding polynomal roots

(c) Copyright 1999 Julian V. Noble.

Permi ssion is granted by the author to
use this software for any application pro-
vided this copyright notice is preserved.

This is an ANS Forth programrequiring the
FLOAT, FLQAT EXT, FILE and TOOLS EXT wordsets.

Envi ronnent al dependences:

Assumes PARSE can be used interpretively.

Assumes i ndependent floating point stack

Conpl ex nunbers reside on the fp stack as

( f: xy) where z =x +iy (Imabove Re).

The conplex sqrt function, ZSQRT, is assuned to map
(0, 2*pi) into (0, pi). That is, its branch cut is the
positive real axis.

Non- St andar d wor ds

Most of these are conditionally conpil ed.

However as there is as yet no agreenment as to the
nanmes of certain conplex functions, | have chosen
names that seened sensible. Thus instead of

ZABS | have defined |z| (nore telegraphic).

I also use the function |z|”2 which computes

x"2 + y"2 = conjg(z) * z .

The |l exicon for arrays (arrays.f) builds both the number of
el enents and the data size into the header of an array. This
information is required by the word }nov that noves data
fromone array to another array, since | have witten it
generically (that is, it works for any 2 arrays). }nov
could easily be replaced by one that works only for conpl ex
arrays, if another array definition is preferred.

Definitions using |z|, |z|”2 or }nmov have been marked
with **** for easy reference.

FALSE [ F]
Reference: F.S. Acton, "Nunerical Methods that (Usually) Work"

(Mat hematical Ass’'n of Anerica, Washington, DC, 1990)

Algorithm:

[ THEN]

For a given z, assumes z - z1 = a, and for all other
roots, z - zn = b ; then
G=p (z)/lp(z) =1/a + (n-1)/b
and
H=G2- p"(z)/p(2)
Elimnate b to get
a=n/( G+ sqgrt((nHG2)*(n-1)) )
The next guess is z7 =z - a .
Iterate until converged, then deflate pol ynom al
by the factor (z - root) and repeat.

1/anr2 + (n-1)/b"2 .



PHYS 551 Computational Methods of Physics
Chapter 2 Roots of equations

MARKER - | aguer
\ define "undefined" if it does not already exist
BL PARSE undefined DUP PAD C!' PAD CHAR+ SWAP CHARS MOVE PAD FIND NI P 0=

[IF] : undefined BL WORD FIND NP 0= ; [THEN]

i ncl ude conpl ex. f \ lexicon for conplex arithnetic
undefined s>f [1F] : s>f S>D D>F [ THEN]

undefined f-rot [ITF] : f-rot FROT FROT ; [THEN]

undefined fnip [IF] : fnip FSWAP FDROP ; [THEN

undefi ned ftuck [ITF] : ftuck FSWAP FOVER ; [ THEN]

undefined 1/f [TF] = 1/f F1.0 FSWAP F/ ; [THEN

undefined f~2 [ITF] = f~2 FDUP F* [ THEN]

undefined z"2 [IF] : z"2 zdup z* [ THEN]

undefined z*f [TF] = z*f FROT FOVER F* f-rot F* ; [THEN]
undefined z2* [ITF] = z2* F2*  FSWAP F2* FSWAP [ THEN]
i nclude arrays.f \ lexicon for arrays

\ these are conplex fp arrays
20 long 2 FLOATS 1larray a{
20 long 2 FLOATS 1larray b{
20 long 2 FLOATS 1larray c{
20 long 2 FLOATS 1larray d{
\ conpl ex vari abl es
zvari abl es (n--) 0DO CREATE 2 FLOATS ALLOT LOOP
3 zvariables G zz zp
fvariable epsilon
0 VALUE dumny{
0 VALUE chummy{
0 VALUE #iter
6 VALUE max_iter
e synthetic division

coefficients of input polynoni al
coefficients of quotient polynonial
coefficients of 1st derivative
coefficients of 2nd derivative

— e e —

\'oplz] = (z-s) * q[z] + p[s]
\ adrl is address of coeff array of input polynonial p[z]
\ adr2 is address of coeff array of quotient polynom al qfz]
\ n is degree of polynoni al
}zsynth ( adrl adr2 n -- ) ( f: s -- p[s])
>R \ save N on rstack
TO chumy({ \ vector array nanes
TO dunmy{
dumy{ R@} z@ ( f: -- z sum
0 R> 1- DO \ count down fromNto 1
zdup chummy{ | } 2! \' b{ I } = sum
zover z*
dumy{ | } z@ z+ \ sum=sum* x + af{ | }
-1 +LOooP ( f: s p[s])

zZnip ;



25 Roots of polynomials

FALSE [ F]
Test case for synthetic division:
}. (adr n--) \ display conplex larray
OsSw, DO DUP I} z@ CR I . z. -1 +LOOP DROP ;
7.e0 0e0 af{ 0} z!
-5.e0 0e0 a{ 1} z!
1.e0 0e0 a{ 2 } z!
-14.e0 0e0 a{ 3} z!
0.e0 0e0 af 4 } z!
3.e0 0e0 a{ 51} z!
a{ b{ 5 5.e0 0e0 )zsynth CR z.
b{ 4 }.

answers shoul d be

7.63200E3 + i 0.00000E-1 ok
4 3.00000EO0 + i 0.00000E-1

3 1.50000E1 + i 0.00000E-1

2 6.10000E1 + i 0.00000E-1

1 3.06000E2 + i 0.00000E-1

0 1.52500E3 + i 0.00000E-1 ok

[ THEN]

L R end synthetic division
guessed? zdup |z| epsilon F@ F ; \ uses |z| *ok ko
zmax ( f: z1 z2 -- z1 | z2) \ leave value with larger |z|

zover zover ( f: z1 z2 z1 z2)

|z|~2 f-rot |z|"2 ( f: --2z1 z2 |z2|*2 |z1]"2)

F< IF zdrop ELSE znip THEN ; \ uses |z|"2 *oxxk
guess (n--) (f: z-- a)

>R \ save N on rstack

zdup zz z! \ save initial guess

a{ b{ R@}zsynth ( f: -- p[z])

guessed? |IF R DROP EXIT THEN

zz z@ b{ c{ R@1- }zsynth ( f: -- p[z] p'[z] )

zover z/ G z! \ G=p'[z] | p[z]

zz z@ c{ d{ R@2 - }zsynth

z2* ( fr --plz] p"[z] )

zswap z/ znegate ( f: -- -p"/p

Gz@ z"2 z+ ( f: --H

R@osf z*f Gz@ z"2 z- (f: -- ntHQG2)

R@1- s>f z*f zsqgrt (f: -- R

zdup znegate (f: -- R -R

Gz@ z+ (f: -- RGR

zswap G z@ z+ ( f: -- GR GtR

zZmax

1/z R> s>f z*f ; \'a=n/( G+ - sqrt((nHG2)*(n-1)) )

0 VALUE #bytes
} nov ( src dst n --) \ array_dst = array_src
>R 2DUP @ TO #bytes @ #bytes ABORT" Inconsistent data types"
OR DO OVER | } OVER 1| } ( src[0] dst[O] src[l] dst[I])
#byt es MOVE
-1 +LOOP 2DROP



PHYS 551 Computational Methods of Physics

Chapter 2 Roots of equations
new z (f: a--) znegate zz z@ z+ zp z! ;
apart? 72z z@zp z@ z- |z| epsilon f@ F> ; \ uses |z|
<r oot > (n--) ( f: -- root)
>R
zz z@ R@ guess (f: -- a)
new_z
0 TO #iter
BEG N apart? #iter max_iter < AND
VWH LE zp z@ zdup zz z! \ zz = zp
R@ guess
new_z
#iter 1+ TO #iter
REPEAT
R> DROP ;
guadr oot s
al 2} z@ |z|~2 FO= \ uses |z|"2 i
IF a{ 1} z@|z|*2 FO=
IF CR ." no roots!"
ELSE CR ." only one root!
a{ 0} z@ a{ 1} z@ z/ znegate z.
THEN
ELSE
al 1} z@ znegate ( f: -b)
zdup z"2

a{ 0} z@ af{ 2} z@

z* z2* z2* z-

zsqrt ( f: -b d)
zover zover (f: -bd-bd
z+ z2/ al 2} z@z/ CR z.
z- z2/ al 2} z@z/ CR z.
THEN ;
roots (n--) (f: z0 epsilon --)

epsilon FI' zz z!
BEG N DUP 2 >
VWH LE DUP <root> CR zp z@z.

1- DUP R b{ a{ R }nov \ uses }nov i

REPEAT DROP
quadr oot s ;

29

* k k%



20

FALSE [ F]
Test case
p(z) =

1

4.

-6

-4,

-7

-48.

60.

Say: 6

Shoul d get
- 5. 00000EO0

for roots:
z"6 + 4*z"

el
el
el
el
el
el
el

-10e0 0e0

- 2. 00000E0

7. 09585E-
1. 00000EO
2. 00000EOD
2. 93416E-
[ THEN]

11

11

+

+
+

Oe0
Oe0
0e0
0e0
Oe0
Oe0
Oe0

i
+
+

i
i
+

af
af
af
af
af
af
af

z!
z!
z!
z!
z!
z!
z!

OFRP NWMOIIO O
e e e e e

le-9 roots

0. 0O0000E-1
0. 00000E-1
1. 73205E0
6. 14840E- 12
- 3. 36886E- 12
-1. 73205E0

Roots of polynomials

6*z"4 -

ok

4*z"3 -

7*z"2 - 48*z + 60



