
Feeling No Pain in the Argand Plane

Julian V. Noble

August 4, 2003

Abstract

It’s no fun to program complex arithmetic in a language that doesn’t
support it. Worse, the resulting code is cumbersome, opaque, and
hard to maintain. In this column I illustrate how complex arithmetic
simplifies algorithms in two-dimensional Cartesian vector space. I also
show how straying into the complex plane can make difficult numerical
integrals tractable. In other words, I am arguing that languages for
scientific computation should support complex arithmetic.

Introduction

One of the questions I am often asked is “Why do you program in an obscure
language like Forth?” The most honest answer, as I am sure it would be for
most of us, is “History.” That is, we use our favorite programming languages
because we have learned to think in them, just as with natural languages.

However, I also have a specific reason that goes beyond history, and that
provides the theme of today’s column. In the early 1980’s, when I moved
from mainframes to personal computers, I was using primarily Fortran 77.
Many of my programs incorporated complex arithmetic, which Fortran has
supported since Fortran II. (And this feature may well be one of the reasons
for Fortran’s longevity, despite that language’s manifold deficiencies.) BA-
SIC, C and Pascal, of course, never pretended to support complex arithmetic.

1

But it was a shock when the ostensibly compliant Fortran 77 I bought for
my PC did not support complex arithmetic either. Complex arithmetic can,
of course, be expressed as real-number arithmetic, but the result is messy.
As the Numerical Recipes in C file complex.c [1] makes clear, each complex
operation—even addition and multiplication—requires a separate subroutine.

This left a choice between the two extensible languages, Lisp and Forth,
both of which let me add complex types and arithmetic operations as needed.
But further research revealed that commercial Lisps of that era were memory
hogs, whereas Forth fit in a mere 32Kb. And finally, I already understood
Forth’s postfix notation because of my familiarity with Hewlett-Packard cal-
culators, whereas Lisp’s prefix notation—and the accompanying shoals of
scope-defining parentheses—intimidated me.

Of course nowadays there are Python, C++ and other languages beside
Fortran (including an upcoming version of C) that include complex types
and operators. Nor is memory a major issue anymore. So today I probably
would not bother with a language—however extensible—for which I would
have to write complex extensions from scratch. And that would be a pity,
because I would thereby miss out on the other features that endear Forth to
its fans.

Since I contemplate future forays into the complex plane in upcoming
columns, it seemed reasonable to introduce the subject with two applica-
tions where complex arithmetic simplifies the programming. These are vector
analysis in two dimensions, and evaluating certain integrals numerically.

Operations with complex numbers

The complex numbers

z = x + iy, i2 = −1 ,

defined in terms of real number pairs (x, y), were introduced to provide so-
lutions to such polynomial equations as x2 − 2x + 5 = 0, which obviously

2

cannot be satisfied by any real number substituted for x, but is satisfied by
the two complex roots z = 1± 2i.

In z = x+ iy, x is called the real part of z, denoted by Re(z); the number
y is called, for historical reasons, the imaginary part, denoted by Im(z).
Operations like addition, multiplication and division can be defined by the
usual laws of algebra. For example,

(x + iy) (u + iv) = xu + iyu + ixv + i2yv

≡ (xu− yv) + i (yu + xv) .

That is, when we multiply two complex numbers the result is another complex
number, and similarly with addition1. One important new operation we
shall need is complex conjugation, denoted by a ∗ superscript and defined as
“reverse the sign of the imaginary part”:

z∗ = (x + iy)∗
df
= x− iy .

Adding complex numbers and complex operations to an extensible pro-
gramming language is an instructive exercise2. A quick-and-dirty definition
of, say, the absolute value of a complex number,

|z| =
√

x2 + y2

is easy3:

real function zabs (z)

return sqrt((Re(z))^2 + (Im(z))^2)

1A mathematician would say the complex numbers are closed under addition and mul-
tiplication.

2See the file complex.f under the link “Complex Number Lexicon for Forth” on my
web page.

3As usual I use a Fortran-ish cum C-ish pseudocode for code fragments. Working code
in C and Forth can be found on my web site:

http://www.phys.virginia.edu/∼jvn/
under the link to my course “Computational Methods of Physics”.

3

but it would never do in a library: if, say, Im(z) were larger than the square
root of the maximum floating point number, then (Im(z))2 would overflow
[2]. So the correct way to write the code is

real function zabs (z)

complex z

if z = cmplx(0,0) return 0 \ check for z = 0

else

x = max(abs (Re(z)), abs (Im(z)))

y = min(abs (Re(z)), abs (Im(z)))

return x * sqrt(1 + (y/x)^2)

Many modern machines have floating point divide operations that are sub-
stantially slower than adds or multiplies. Since the division takes about the
same time as the square root, on such machines the second version will take
about twice as long to execute as the naive version (the square root is the
speed bottleneck).

Two dimensional vectors

Once we have a library of complex functions and operators we can use them
to simplify certain problems. For example, the complex number z = x +
iy can be regarded as a vector ~r = xx̂ + yŷ in 2-dimensional Cartesian
coordinates (here x̂ and ŷ are unit vectors in the horizontal, or x, direction
and the vertical, or y, direction). This 2-dimensional vector space is called
the Argand plane. The magnitude of a complex number is just the length of
its corresponding Argand vector:

|z| = |~r| =
√

x2 + y2 . (1)

Figure 1 below illustrates these definitions.

4

Figure 1 also exhibits the polar representation, z = r eiϑ, which exploits
Euler’s relation,

eiθ = cos θ + i sin θ ,

so that

x = r cos ϑ
y = r sin ϑ .

This one-to-one correspondence between complex numbers and Cartesian
2-vectors lets us replace vector operations, usually expressed as matrix multi-
plication, by simple complex arithmetic. For example, we can rotate a vector
by an angle ϕ counter-clockwise about the origin via

(
x′

y′

)
=

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

) (
x
y

)
.

Complex arithmetic simplifies this to

z′ = eiϕz .

Again, suppose we want the dot product of two vectors

~r · ~s = xu + yv

5

where

~r =

(
x
y

)
, ~s =

(
u
v

)
;

In most languages the dot product must be written as a function or subrou-
tine. But with complex arithmetic we may write it as a simple multiplication:

~r · ~s = xu + yv = Re [(x− iy) (u + iv)] ≡ Re (z∗w) .

Similarly, we can compute the vector product of two 2-dimensional vectors
(the usual vector product points perpendicular to the x − y plane; I label
that direction ζ̂ to distinguish it from the complex number z)

(~r × ~s) · ζ̂ df
= xv − yu ≡ Im (z∗w) .

That is, one complex multiplication, z∗w, evaluates simultaneously both the
dot and vector products of the vectors represented by z and w.

Geometric relations

Hidden line removal algorithms need to determine whether two line-segments
in a plane intersect, and if so, where. Although I am not planning to write
a graphics program any time soon, a future column will require discovering
whether a specific point in a plane lies within a given triangle. I will now show
how both these problems can be solved more simply with complex arithmetic
than with vectors.

Two line-segments can be represented parametrically by

z (t) = a (1− t) + bt ≡ a + (b− a)t
w (u) = A (1− u) + Bu ≡ A + (B − A)u

6

where a, b and A,B are the endpoints of the segments. The parameters t and
u are real numbers lying in the interval [0, 1]. We must first decide whether
the lines are parallel, since parallel lines do not intersect. The cross-product
of parallel vectors vanishes, so we compute

[~r(t)− ~r(0)]× [~s(u)− ~s(0)] ⇔ Im [(z(t)− z(0))∗ (w(u)− w(0))] . (2)

If the cross-product is 6= 0 the (infinitely extended) lines will intersect some-
where. We therefore locate the point of intersection and determine whether
it corresponds to values of t and u both lying between 0 and 1, i.e. the inter-
section point is common to both segments. The segments cross if and only if
this condition is met. The possible cases are illustrated by the line segments
âb and ÂB (crossing segments); the segments âb and ĉd (non-parallel, non-

crossing); and ÂB and ĉd (parallel, non-crossing) shown in Figure 2 below.

The point of intersection of the two lines is given by

a + (b− a)t = A + (B − A)u ;

multiplying through by (b− a)∗ we have

(b− a)∗(b− a)t = |b− a|2 t = (b− a)∗ (A− a) + (b− a)∗(B − A)u .

Taking the imaginary parts of both sides, and recalling that t, u and |b− a|2
are all real, we find

u =
Im [(b− a)∗ (A− a)]

Im [(B − A)∗(b− a)]
(3a)

7

and, mutatis mutandis,

t =
Im [(B − A)∗ (A− a)]

Im [(B − A)∗(b− a)]
. (3b)

The denominators are the same in both cases. This is hardly surprising
since, had we worked this out by solving coupled linear equations for t and
u, we would have seen that the denominators are the determinant of the
2× 2 matrix. Moreover, we see from Eq. 2 and Eq. 3a,b that if the lines had
been parallel, the point of intersection would be infinitely far from the origin
(because we would be dividing by zero).

This algorithm is easily translated to pseudocode:

logical function intersect? (zi, zf, wi, wf)

/* returns TRUE if segments intersect */

complex zi, zf, wi, wf, b, bb

real t, u, Det

b = zf - zi

bb = wf - wi

Det = Im(conjg(bb) * b)

if abs(Det) < 1.0e-10 \ check for parallelism

return false

else

t = Im(conjg(bb) * (wi - zi)) / Det

u = Im(conjg(b) * (wi - zi)) / Det

return ((0 <= t <= 1) && (0 <= u <= 1))

Next we shall determine whether a given point lies within a given triangle.
Label the corners of the triangle with complex numbers A,B and C as shown
in Figure 3:

8

Then it is easy to see that if the line ÂB, for example, were rotated about
the point A until it were horizontal (taking the sense of rotation to leave the
rotated point C ′ above Â′B′) then the rotated point Z ′ lies above the line
Â′B′ if it lies within the triangle. Of course, a point Z ′ outside the triangle
might lie above one (rotated) side, say Â′B′. But an outside point cannot
simultaneously lie “above” all three (rotated) sides. Thus if we repeat the
rotation for the sides B̂C and ĈA, an exterior Z ′ will end up below at least
one rotated side. We therefore transform Z once per side, each time inquiring
whether the new Z ′ lies above the corresponding side. If Z is “above” all
three sides, it must be an interior point of ∆ABC .

To transform Z relative to a given line ÂB, by translating the origin to
A and then rotating about A until Â′B′ is horizontal, we write

B − A = |B − A| eiθ ,

and thus

Z ′ = e−iθ (Z − A) =
(B − A)∗

|B − A| (Z − A) .

9

Since we need only the algebraic sign of Im(Z ′), we can eliminate the division
by the (positive) length |B − A|. We are left with the criterion

Im [(B − A)∗ (Z − A)] > 0 .

However, we might have rotated the wrong way, so that the point C ′ now
lies below Â′B′ rather than above. We could do more geometry to get the
correct sense of rotation, but it seems simpler to apply the transformation
once to Z and once to C and to multiply the criteria. We also have to check
that the area of the triangle is greater than some minimum, since we are not
interested in degenerate triangles.

The pseudocode for this algorithm is then

integer function isign (x, k) \ needed function

real x

integer k

if x > 0

return k

else

if x = 0

return 0

else

return -k

integer function above? (z, a, b) \ a and b are the ends

complex z, a, b

return isign(Im((z - a) * conjg(b - a)) , 1)

logical function inside? (z, a, b, c) \ true if z is inside

complex z, a, b, c

integer k, l, m

if abs(Im(conjg(c - a) * (b - a))) < 1.0e-10

abort" Triangle is degenerate!"

else

k = above? (z, a, b) * above? (c, a, b)

l = above? (z, b, c) * above? (a, b, c)

10

m = above? (z, c, a) * above? (b, c, a)

return ((k > 0) && (l > 0)) && (m > 0)

Motion in two dimensions

Let us next apply complex arithmetic to the description of an out-of-control
vehicle sliding sideways, that encounters a low obstacle and flips over as a
result (“wheels-pinned rollover accident”). This is shown schematically in
Figure 4:

We model the vehicle by a rectangle with principal moment of inertia (about
its center of mass) I, mass M and dimensions h (height) and w (width). If
we represent its center of mass position by z, then Newton’s Second Law of
Motion is

Mz̈ = F − iMg

where the (complex) force F = Fx+iFy represents all external forces that act
on the vehicle with the exception of gravity. For example, when the vehicle

11

slides across horizontal pavement,

F = −µN sgn (Re (ż)) + β + iN

where µ is the coefficient of sliding friction, N is the sum of the vertical forces
the pavement exerts on the tires, and β is the force exerted by the curb. When
the near tire collides with the barrier it experiences an impulsive force f in
the horizontal direction. If the vehicle takes to the air, N → 0 and the only
force left is gravity.

The rate of change of angular momentum equals the applied torque (we
oversimplify this for succinctness—the pavement forces on a real car act at
separated points):

Iθ̈ = Im
[
eiθ (z − zr)

∗ (F − iMg)
]

where we take the axis of rotation to be the point of collision between wheel
and curb. Forth and C programs (with animated graphics and more detailed
explanations) can be found on my Web page.

Numerical integration in the Argand plane

In an earlier column [3] I gave an example of how a numerically difficult
real-valued Cauchy principal value integral

I = P
∫ ∞

0
dx

1

1− x3

could be simplified by rotating to the contour z = re−iπ/3, and integrating
in the complex plane.

More recently I recently came across the integral

IB (A) = Re
∫ π/2

0
dθ eiA cos θ (sin θ)B

12

on one of the news groups (perhaps sci.math.num-analysis). Clearly,
IB (A) is (up to an uninteresting factor) a Bessel function. However if A
is large, the integral is difficult to evaluate precisely. Evaluation of oscilla-
tory integrals seems to be a topic of some current interest [4].

Suppose we rewrite the integral, using the transformation t = cosθ, in
the form

IB (A) = Re
∫ 1

0
dt eiAt

(
1− t2

)(B−1)/2 ≡ Re
∫ 1

0
dt eiAt

(
1− t2

)λ
. (4)

The function (1− t2)
λ

has (for non-integer λ) branch points at t = ±1; the
corresponding branch lines can be arranged to run along the real t−axis from
−∞ to +1. The original contour is the line t = x + iε , 0 ≤ x ≤ 1 (shown in
green in Figure 5). By Cauchy’s Theorem [5, 6],

∮

Γ

dz f (z) = 0

we may distort the original contour to the tall, thin rectangle of base 1 and
height L (shown in blue) since we can do so without crossing singularities of

13

the function f(z). Thus we may write

IB (A) = lim
L→∞

∫ iL

i0+
dt eiAt

((
1− t2

)λ − eiA
(
1− (1 + t)2

)λ
)

+ lim
L→∞

e−AL
∫ 1

0
dx eiAx

(
1− (x + iL)2

)λ
.

The second integral can be neglected in the limit L →∞ since it is bounded
in magnitude by

∣∣∣∣e−AL
∫ 1

0
dx eiAx

(
1− (x + iL)2

)λ
∣∣∣∣ ≤ e−AL

∫ 1

0
dx

∣∣∣eiAx
∣∣∣
∣∣∣∣
(
1− (x + iL)2

)λ
∣∣∣∣

≤ e−AL
∫ 1

0
dx

(
3 + L2

)λ

=
(
3 + L2

)λ
e−AL →

L→∞
0 .

The change of variable t → iy allows us to express IB(A) as

IB (A) = Re i
∫ ∞

0
dy e−Ay

[(
1 + y2

)λ − eiA (y (y − 2i))λ
]

(5)

= Im eiA
∫ ∞

0
dy e−Ay (y (y − 2i))λ ,

where the second line of Eq. 5 follows from the assumption that λ is real (for
complex λ we must keep both terms from the first line). For moderate values
of λ the integral is rapidly convergent.

We have thereby replaced an integrand that definitely converges (it oscil-
lates in sign and decreases in magnitude) with one that decays exponentially,
for which a Gauss-Laguerre quadrature formula would be appropriate. Table
1 below lists values of the integral Eq. 4, for several large values of A and
λ = 7, computed directly using adaptive quadrature. Table 1 also lists values
of the transformed integral Eq. 5 computed using adaptive (Simpson’s-rule)

14

Table 1: Quadrature by Real- and Complex Arithmetic

Real Complex

A Ncalls I(A) Ncalls I(A)

10 2445 7.31477251207E-3 1545 7.31477251218E-3
20 3601 -2.19385695893E-5 373 -2.19385695736E-5
30 4917 8.87060992799E-7 177 8.87060992040E-7

Table 2: Adaptive vs. Gauss-Laguerre Quadrature

Adaptive 10-pt Gauss-Laguerre

A Ncalls I(A) I(A)

10 1545 7.31477251218E-3 7.31477251203E-3
20 373 -2.19385695736E-5 -2.19385695900E-5
30 177 8.87060992040E-7 8.87060992893E-7

quadrature. The number of evaluations of the integrand is also given. Table
2 compares the evaluation of the transformed integral by adaptive quadra-
ture with the results of a 10-point Gauss-Laguerre rule. The absolute error
criterion for the adaptive quadrature was 10−12; as is clear, both the real and
complex adaptive methods agree with each other to this precision; the 10-
point Gauss-Laguerre method agrees with both to this precision and requires
by far the fewest evaluations, so it is the method of choice.

Rotating the integration variable of an oscillatory integral into the com-
plex plane is a trick I have long found useful. Even when the integrand
involves the solution of a differential equation the method still works, since
most such equations are sufficiently analytic that they can be continued (nu-
merically) into the complex plane. The key issue is to make sure that in
deforming the contour of integration one crosses no singularities.

15

References

[1] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Nu-
merical Recipes in C, 2nd ed. (Cambridge University Press, New York,
1992), Appendix C.

[2] This sort of thing is discussed by David Goldberg, “What every com-
puter scientist should know about floating-point arithmetic”, ACM
Computing Surveys 23 (1991) pp. 5-48.

[3] J.V. Noble, “Gauss-Legendre Principal Value Integration”, CiSE
2(1)(2000) 92-95.

[4] Ulf T. Ehrenmark, A note on a recent study of oscillatory integration
rules (http://www.lgu.ac.uk/cismres/Papers/jcam.pdf).

[5] E.T. Copson, An introduction to the theory of functions of a complex
variable (Clarendon Press, Oxford, 1955).

[6] E.T. Whittaker and G.N. Watson, A course of modern analysis, 4th ed.
(Cambridge University Press, New York, 1963).

Julian Noble is Professor Emeritus of Physics at the
Department of Physics
University of Virginia
P.O. Box 400714
Charlottesville, VA 22904-4714

He may be contacted at jvn@virginia.edu .

His interests are eclectic, both in and out of physics.
His philosophy of teaching computational methods is
“no black boxes”.

16

Figure captions

1. The Argand plane, illustrating both the vector representation of a com-
plex number, and its polar representation.

2. Line segments that cross and others that do not.

3. A point within a triangle.

4. Cross-sectional view of a wheels-pinned rollover accident.

5. The original (green) and distorted (cyan) contours of a certain numer-
ical integral.

17

	Introduction
	Operations with complex numbers
	Two dimensional vectors
	Geometric relations
	Motion in two dimensions
	Numerical integration in the Argand plane
	References

