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years ago1). So, a word of self-introduction is in order. Back in
the summer of 1960, while interning at Grumman Aircraft, I
was assigned to learn the new language Fortran so that I could
program the company’s brand-new IBM 704. The rules of en-
gagement were arcane—you wrote out the program on an of-
ficial IBM programmer’s pad, submitted it to the keypunch
operators, and (if the Force were with you) got back a punched
deck several days later. Then the fun began. Imagine debug-
ging on a system with three-day job turnaround!

Luckily, the next summer I got to program a Burroughs 220
(in machine language) and an IBM 7090 (in Fortran II) in a
university setting. We were actually allowed to touch the key-
punch machines ourselves (or in the Burroughs’s case, the tape
punch). And—oh, joy!—the turnaround time was “only” 24
hours! If you want some idea of what prehistoric computing
was like, read Fred Hoyle’s sci-fi novels, The Black Cloud
(Lightyear, 1998) and Ossian’s Ride (Harper, 1959)—both have
chapters whose “action” takes place in computer centers.

The personal computer revolution began in the late
1970s. I soon discovered that getting a program to run us-
ing interactive Basic on a desktop machine (such as the HP-
1000 or the NorthStar) was faster than on the big CDC-
6600 mainframe using Fortran. I even published a paper2

whose computations were all done on a Sinclair ZX-81
computer that ran overnight. It had a 4-MHz, 8-bit Z80
chip, with an interpretive ROM Basic and 16 Kbytes of
RAM. It displayed 16 lines of 64 characters on a TV set and
used a tape cassette player for storage. The personal com-
puter was lots slower than a mainframe, but the answers
came out much faster—a paradox we all live with now.

When I learned to program, computer science depart-
ments lay far in the future. For good or ill, I learned about
programming through reading and practice. The upside is

that I acquired no linguistic prejudices along the way and
felt free to try anything. The downside is that I am still ig-
norant of things for which I did not have an immediate use.
In 1985, mainly through force of circumstance, I began to
use Forth for most programming, preferring it to the vari-
ous dialects of Fortran and Basic that had served me until
then. Although I still occasionally dabble in C and Lisp, I
now mostly use Forth and machine code.3,4 Although some
might consider this eccentric, to me it seems no more so
than the artificial machine language MIX that Donald
Knuth illustrates algorithms with.5 Hold the flames; pro-
gram fragments in this column will always be pseudocode—
I won’t slight anyone’s pet language.

Forthcoming columns will explore prescriptions for a
novel way to solve the Laplace equation, the right angle on
keeping orthogonal functions orthogonal, how to do alge-
bra on a computer, finding roots of analytic functions, and
so on. These ideas are not engraved in stone: I welcome sug-
gestions and comments, up to and including guest columns,
and I am sure my coeditor, Isabel Beichl, feels the same.

Fun with uniform variates
This column is about computing based on various forms of

random sampling, or Monte Carlo methods.6 To get the ball
rolling, I illustrate with applications to evaluating integrals,
and to simple simulation, before explaining the prescription
that inspired the column. (You can find the Forth code for all
the applications in this column, including the random-lookup
table objects, at www.phys.virginia.edu/classes/551.jvn.fall01
under the link “Forth system and example programs” and
sublink “Monte Carlo techniques.”)

Integration
Of course, regular CiSE readers already know how to

evaluate integrals using Monte Carlo methods, but it can’t
hurt to begin with something simple. Monte Carlo integra-
tion works best for many dimensions (where it beats the
heck out of repeatedly applying a quadrature rule), but for
clarity, I work in only one dimension here. Consider Figure
1’s graph of a continuous function. If you sprinkle points
uniformly but randomly over the bounding rectangle (as a
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rainstorm would do), it seems intuitively clear that the ratio
of the number n falling in the “target area” under the curve
to the total number of points N approaches the ratio of the
corresponding areas as N increases:

. (1)

Because we know Abox, once we know n/N with sufficient
precision we’re done. This is sometimes called brute-force
Monte Carlo. The pseudocode might resemble Figure 2.

If we apply this code to the function f(x) = x(1 − x) on the
interval (0, 1), within the bounding box 0 ≤ f ≤ 0.5, five runs
(of 104 points each) produce 0.16840, 0.16465, 0.16705,
0.16770, and 0.16525. Their average is 0.16661, and their
standard deviation is 0.0016. The exact value is 1/6; that is,
for this relatively smooth function, the standard error for
one run is roughly 1 percent, which is just what we expect in
a sample of 104.

This brute-force approach is inefficient: it needs too many
random numbers. Because a function’s average value over an
interval is, by definition, its integral divided by the length of
that interval, we have

. (2)

The trick is then to find an independent method for com-
puting fav, which is where random sampling comes in. The
most direct approach picks N uniform
variates xk in (a, b) and defines

. (3)

This method is called straight sampling
and has the advantage of requiring only
one call per point to the built-in
(pseudo) random-number generator
rather than two calls as in the brute-
force algorithm. In n dimensions, this is
n versus n + 1, so the advantage is not so
great. (I assume your system contains a
reasonably good algorithm for generat-
ing random floating-point numbers uni-
formly distributed on the interval (0,1).
By “reasonably good,” I mean it should

have a cycle length of at least 109 and should pass the usual
tests of serial correlation.)

A second strategy—and this leads toward this column’s
theme—is to choose the points where they will matter most.
Importance sampling6 takes variates from some nonuniform
distribution (see Equations 4 and 5) that mimics the func-
tion we want to integrate. If the known nonuniform distri-
bution consists of step functions, we call the method strati-
fied sampling. A related strategy uses antithetic variates, in
which pairs of variates are anticorrelated with each other.
Because

, (4)

where (since they are anticorrelated) the covariance of the
pair ( f , f ′ )

(5)

is negative, the variance can be greatly reduced from straight
sampling, meaning we need fewer points for a given proba-
ble precision. A physical example is the Buffon needle prob-
lem with perpendicular crossed needles, which I often assign
as an exercise.

Batting practice
Simple simulations often use uniform distributions to rep-

resent the odds for discrete events. For example, we might
want to know the incidence of batting slumps in a regular
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Figure 1. A typical function in its bounding box.

Subroutine: inside?
leave 1 if point (x,y) is inside the integration volume,
0 if outside

Main: BruteForce
Npoints = 0 (initialize)
Nunder = 0
BEGIN Npoints < Nmax (TRUE if inequality satisfied)
WHILE (execute up to REPEAT if TRUE)

(otherwise jump to DONE)
randomly choose new point
Nunder = Nunder + inside?
Npoints = Npoints + 1

REPEAT
DONE

Figure 2. Pseudocode for brute-force Monte Carlo integration.
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baseball season of 162 games. If a batting slump is defined
as µ at bats without a hit, then if a player bats, say, 300 times
per season, how many slumps will he experience?

To simulate this Markov process, we assume the player’s
batting average p is his fixed probability of a hit each time at
bat. With each event independent, our program resembles
Figure 3. Typical runs for a 0.200 hitter give

10 stats

10 trials of 300 at bats, giving 55

slumps. ok

10 stats

10 trials of 300 at bats, giving 66

slumps. ok

and so forth. A 0.200 hitter has approximately 6 ± 0.8 slumps
per season, whereas a 0.350 hitter would only experience 
1.2 ± 0.2. The moral seems to be that he who bats better
slumps less—managers take note! Theory predicts roughly
(N − µ)p(1 − p)µ per N at bats. For N = 300, µ = 10, and 
p = 0.2, the formula predicts 6.2 slumps.

Normal variates
What if you want to simulate a

process for which the events are not
representable by uniform variates in
the interval (0, 1)? Because feet follow
the normal (that is, Gaussian) distri-
bution, a shoe manufacturer’s statisti-
cian would sample normally distrib-
uted random variables. Here are two
satisfactory algorithms.

First, choose 12 independent uni-
form variates 0 < ξk < 1 and define

. (6)

It is easy to see that x has mean 0 and
variance 1. The Central Limit theo-
rem, which says that a sum of inde-
pendent random variables is (to a good
approximation) normally distributed,
assures that x is a normal variate. In
Fortran-ish pseudocode,

FUNCTION normal

sum = -6e0

DO 1, I=1,12 (add 12 PRNs)

sum = sum + Rand

1 CONTINUE

normal = sum

The Box-Muller algorithm7 is a useful alternative whose
speed is comparable on some machines. Because

, (7)

if we choose θ uniformly distributed on [0, 2π] and

, (8)

uniformly distributed on (0,1), we generate two indepen-
dent, normally distributed random variables:

(9a)

. (9b)

The algorithm in this form requires three transcendental
functions (log, sin, and cos) and a square root to generate
two normal variates, so it is a bit expensive compared with
generating a dozen uniform variates. George Box and
Mervin Muller discovered a useful trick, based on an earlier
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\ Simulation of batting slumps

\ data structures
0.20e0 FVALUE p \ batting average
300 VALUE N \ # times @ bat/season
10 VALUE mu \ a “slump” is at least mu strikeouts
0 VALUE hitless \ current # of hitless @ bats
0 VALUE slumps \ # slumps this season

\ program

function: hit? \ it’s a hit if Rand <= p
Rand <= p \ inequalities leave a flag

function: slump? \ it’s a slump if hitless > mu
hitless > mu

subroutine: end_slump
slump? \ was there a slump going?

IF slumps = slumps + 1 ENDIF 
hitless = 0 \ reset—slump is ended

subroutine: at_bat 
N 0 DO  hit? 
IF end_slump
ELSE    hitless = hitless + 1
ENDIF

LOOP

Main: stats (#cases --)
LOCALS| #cases |
hitless = 0 \ initialize
slumps = 0
#cases 0 DO at_bat
LOOP
#cases report \ output results

Figure 3. Monte Carlo simulation of batting slumps.



MAY/JUNE 2002 79

idea of John von Neumann’s:8 if x and y are independent uni-
form variates on the interval (1, −1), the combination

(10)

is uniformly distributed over the interval (0,1). Therefore a
and b defined by

(11a)

(11b)

are independent normally distributed random numbers on
the interval (−∞,∞), each with mean 0 and variance σ2 = 1.
Now we only need compute approximately 2.5 uniform ran-
dom numbers (strictly, 8/π), one transcendental function,
and one square root per two normal variates. Figure 4 shows
the pseudocode. Because x and y are independent, we com-
pute two variates every other time the subroutine is called.
We then return one and save the other (to return on alter-
nate calls). The global flag variable LastCall keeps track of
where we are. On the average, we compute an unsatisfactory
random pair (lying outside the circle) a tad less than 25 per-
cent (that is, 1 − π/4) of the time, so the efficiency is pretty

good. Figure 5 shows a sample of what the algorithm 
produces.

Arbitrary variates
Many physical processes are represented neither by uni-

form nor by normal variates. So, what do we do then? To
sample from an arbitrary probability distribution, if the cu-
mulative distributions for two sets of random variables are

(12a)

(12b)

and if we set P(x(ξ)) = Q(ξ), then our problem is to find the
function x(ξ). Pretend this is a known function, and differ-
entiate both sides with respect to ξ: we get an ordinary dif-
ferential equation,

, (13)

that we could, in principle, integrate numerically. However,
because the distribution at our disposal is typically the uni-
form one, the easiest thing to do is solve the transcendental
equation

(14)

for a uniform variate ξ. Figure 6 is the result of inverting this
equation, for the case p(x) = xe−x.
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Subroutine: Box_Muller
IF LastCall = TRUE
THEN return y

set LastCall = FALSE
ELSE BEGIN (loop until u < 1)

x = -1 + 2 * Rand
y = -1 + 2 * Rand
u = x^2 + y^2

u < 1 UNTIL (end of loop)
u = sqrt (-(2 * ln (u)) / u)
x = x * u
y = y * u
return x
set LastCall = TRUE

ENDIF

Figure 4. The Box-Muller algorithm for normal variates.
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Figure 5. A histogram of 500 normal variates from the 
Box-Muller algorithm.
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Figure 6. A histogram of 1,000 variates from xe−x using 
inversion.
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Alternatively, we could sample the distribution p(x) using
the rejection method:8 choose a random variable η from a
uniform distribution on (0, 1), and choose a value of x in the
domain of p(x) by appropriate scaling. Then, if

ηpmax ≤ p(x), (15)

we keep the point x; otherwise, we reject it. (This resembles
the Box-Muller algorithm, and works for the same reason.)
Figure 7 shows a histogram of 1,000 such variates from the
same distribution xe−x.

Manifestly, the inverse and rejection methods both gener-
ate acceptable distributions. To illustrate, Figure 8 is output
from a simulation of the Young two-slit experiment, showing
how a diffraction pattern builds up from individual photons.
(I have done versions using either in-
version or rejection—there seems little
difference in execution speed, although
I had expected rejection to be signifi-
cantly faster.) The probability distrib-
ution, in the direction perpendicular to
the slits, is proportional to cos2x. The
screen shot contains 500 “photons.”

Random objects
All the preceding was preamble: I

am now about to Prescribe. In a large
simulation, both the rejection and in-
verse algorithms are generally far too
slow. The solution is a random-lookup
table. This is equivalent to replacing
the actual distribution function p(x)
with a step-function approximation to
it, as Figure 9 shows.

For many simulations, a histogram
representation of the nonuniform dis-
tribution is perfectly adequate (the

technical term is “good enough for government work”). De-
pending on the available storage, we could sufficiently fine-
grain the histogram so as not to incur any loss of “physical
significance.” To construct such a representation, it is
enough to create a table of N variates Xk by solving the 
equation

, k = 0, …, N − 1. (16)

Now, in what sense does such a table represent the desired
random process? If we sample it by generating random in-
dices into the table, the variates we randomly sample will ap-
proximate variates drawn from the original distribution. For
example, Figure 10 shows a histogram of 1,000 samples from
the distribution p(x) = xe−x, retrieved from a table with only
64 entries. The results are quite acceptable. And, of course,
by doing it this way, we only have to generate one random
integer and no expensive functions whenever we want a ran-
dom variate. Although the table used in Figure 10 has only
64 = 26 entries, my random-number generator has a cycle
length of 231, so there are 225 ≈ 3 × 107 possible ways for it
to traverse the table (a lot fewer than the 64! ≈ 1089 possible
orderings of a 64-entry table but big enough for most pur-
poses). Even if you want a more fine-grained table, it gets
constructed once, so the time consumed in solving the tran-
scendental equation N times is unimportant.
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Figure 7. A histogram of 1,000 variates from xe−x using 
rejection.

Figure 8. A screen shot of 500 “photons” passing through parallel slits.
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In Fortran or C, we must construct each random-lookup
table by hand, define an array to hold the table, and then de-
fine a function that uses that array. The array must be filled
before the program proper is executed by another subrou-
tine written to do that. By contrast, extensible languages
such as Lisp and Forth, as well as object-oriented ones such
as C++, SmallTalk, or Forth, provide tools for defining con-
structors that can generate as many (independent) named
lookup tables as we like. Each such table becomes an ob-
ject—data packaged with code that automatically performs
the table lookup—including, if desired, its own random-
number generator. By using different generators (or differ-
ent seeds) for different tables (even if they represent the
same distributions), we can eliminate problems arising from
serial correlations (that is, a given uniform generator might
not be random enough, even though it passes standard tests).

I first used this technique to simulate the passage of high-
energy particles through large atomic nuclei. An incident

particle interacts differently with neutrons and protons; they
in turn have their own momentum and spin distributions.
What happens depends not only on the initial conditions but
also on the branching probabilities for the various types of
reactions that can occur. It gets very complex very quickly,
and you’d have to repeat the “experiment” millions of times
to obtain adequate statistics. It was helpful to be able to cre-
ate named lookup objects for each different statistical dis-
tribution, which, when invoked, would return the appropri-
ate sample variate. I hope you find this trick equally helpful.
Happy computing!

As an afterword, I should note that at least two earlier Com-
puting Prescriptions have discussed methods for generating
variates from nonuniform distributions.9,10 Of particular rel-
evance is Alastair Walker’s “alias” method,11,12 explained by
Donald Knuth13 and featured in Isabel Beichl and Francis Sul-
livan’s column,9 because it uses a precomputed lookup table.
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Figure 9. A histogram approximation of p(x) = xe−x by its 
average over equal intervals.
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Figure 10. A histogram of 1,000 variates from xe−x using a 64-
entry random-lookup table.
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