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COMPUTING PRESCRIPTIONS

GAUSS-LEGENDRE PRINCIPAL VALUE INTEGRATION

By Julian V. Noble

S WE ATTEMPT MORE SOFHISTICATTD
PROJECTS IN SCIENCE AND ENGINEERING,
THE MATHEMATICAL TOOLS WE APPLY TO THEM
ALSO BECOME MORE SOPHISTICATED. BECAUSE 50

few problems lend themselves to closed-form solution, we of-
ten need to convert formal definidens into practical numerical
methods. One such problem deals with the Principal Value in-
tegral, which many students encounter in a course on functions
of a complex variable. However, the prospect of evaluating one
numerically might seem rather daunting. To the best of my
knowledge, the subject remains outside the treatments of nu-
merical quadrature found in treatises on numerical analysis.

The Principal Value integral
Early in the [9th century, Augustin Cauchy defined the

PV integral as
I(x) =p hdt-p—(ﬂ = lim Uﬁ“sdtﬁ(ﬂ + : dt%}
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It arises in applications of Cauchy’s residue theorem™ when
the pole lies on the real axis within the interval of integra-
tion, g <& < b. The function p(#) in the preceding equation
is assumed continuous on the interval of integration.

Familiar instances where PV integrals arise include inte-
gral transforms, Green's functions for scattering, and dis-
persion relations such as
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which relates the real part of the forward scattering ampli-
tude for photons of angular frequency @ to the total scat-
tering cross section ofg). (Such relationships, because of the
general nature of the assumptions underlying their deriva-
tion and because they relate quantities that can be measured,
lead to important sum rules and consistency checks in
atomic, nuclear, and particle physics.)

Contour deformation

When the function p(#) or the interval (g, #) docs not
lend itself to closed-form evaluation of a PV integral, we
must resort to numerical quadrature. Researchers have
proposed various ways to perform this. For example,
when p(#) has an explicit analytic continuation to a por-
tion of the complex plane including the line segment of
integration and a region with Im(?) = (, we can deform the
contour into the complex plane (see Figure 1).

Thus
P J.ba!tﬂ(ﬂ = Re[j dzM}.

The above integral requires complex arithmetic, to be
sure, but we can evaluate it using ordinary quadrature
technigues. A simple example is
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where we deform to the line £ = #e7™ and integrate nu-
merically to get 0.604599788078..., in excellent agree-
ment with the exact result, 1/(3¥3). Here [ used an adap-
tive integration routine based on a three-point Gauss-
Legendre rule for the subintervals, with the absolute pre-
cision set to 1071%,

Not surprisingly, the PV integral can be numerically
intractable. Figure 2 exhibits the integrand of a typical ex-
ample. Clearly, significant cancellations come from con-
tributions on either side of the singularity. This means
that straightforwacd numerical quadrature will express the
desired result as a small difference between large num-
bers, a situation notoriously prone to round-off error.

Computing the PV integral directly

The contour-deformation approach has two disadvan-
tages: the explicit analytic continuation of p(z) must be
known; moreover, complex arithmetic is not available in
all computer languages and entails a two- to fourfold in-
crease in computational effort (that is, ranning time). So,
William Thompson has proposed to compute the PV
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Figure 1. A conteur deformed away from a singularity at the
point x in the complex t-plane.

integral dircetly, in real arithinetic.’ Thompsoen isolates the
singularity within a symmetric interval of finite size:
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The crucial portion,

A p(r+x
=P L\ dt

can be integrated term-by-term using the Taylor series ex-
pansion of p{t + ) about £=0:
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‘The order of the first neglected term is 2Nmax + 3.

In the absence of explicit expressions for the high-order
derivatives, Thompson advacates computing them by dif-
ferentiating interpolation formulas. In either case, the pro-
cedure might becorne somewhat clunsy because, to achicve
an absolute etror £, the order of the highest retained deriv-
ative must be

log(e)
max log(A/R)

2N

where R Is the distance from the point# + 40 to the nearest
singularity of p(t + x). This estimate is based on Cauchy’s

hound on derivatives of an analytic function.

A better way

Let’s look at a simpler, more efficient procedure for eval-
uating mnmerically the Cauchy PV integral. We approximatc
I, by a Gauss-Legendre* quadrature formula:
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Figure 2. The integrand e/x illustrating the large cancellations
near x = 0 and the consequent possibilities of round-off error.

Table 1. Gauss-Legendre weights and points.

0. 360761573043139
©0,171324492379170 ¢

—-G 9324695142031 S

where & are the zeros of the Legendre polynomial Py or
Py and w, are the corvesponding weights. Although the
Gauoss-Legendre family of quadrature rules has no special
virtue (Gauss-Hermite, Gauss-Laguerre, or Gauss-Cheby-
shev could work equally well—any natural interval and scal-
ing rule would do), the problem’ symmetry makes scaling
(=4, A) to (-1, 1) the sitplest alternative. Because the points
and weights that the Gauss-Legendre fermula uses are re-
spectively antisymmetric and symmetric about & = 0, we can
drop the constant term plx). However, if we choose an odd-
order formula, we must account for the point £= 0 by in-
cluding the term w,p{x).

The usual wisdom prefers odd-order Gauss-Legendre
formulas to even-order ones. In this case, however, because
we want to avoid evaluating any detivatives of p(f), we should
employ an even-order (that is, 7,,;,; = 2K) formula because
it avoids the derivative term at £= 0. Table 1 lists the points
and weights for Gauss-Legendre rules of two, four, and six
points, to 15 decimal places. As an illustration, ‘Table 2 lists
the results of applying Gauss-I.egendre integration to
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Table 2. PV lntegral by Gauss—Legendre mtegrauon

L ‘51(1)+E1(1) ;

RIEE 211297772844928 -
U4 211450171810538 _

T 211450175075134 i

Table 3.pv Integral by the derivatives method.

I‘LNmux L E'(1)+E1(1}
o . 2,00000000060000 L
ST 2o,
2 - _"2?1444444444444,

3 :

Fi(1)+ y(1) = j_lldz‘; = 211450175075 .. |

We can compate Table 2% results with Thompson's
method requiring derivatives. Table 3 evaluates Fi(l) + E(1)
by summing the terms of Thompson’ fortula. Obtaining
the precision given by the sixth-order Gauss-Legendre
formula {(which would seldom be necessary in practice) re-
quires keeping terms 0 to 6 in the sum. That is, we must
evaluate the 13th derivative of the function p(t +x) for ab-
solute precision of 107",

Given that we must evaluate a 13th derivative, how many
function evaluations do we need? This depends on whether
we know the derivatives in closed form at the paint of sin-
gularity. For the simple case ¢ at = 0, we do know them—
all the derivatives are unity. With more complicated fune-
tions, however, computing the derivatives—cven if known
in closed form through the application of a computer alge-
bra program—will be somewhat more time-consuming. If
we must evaluate 13th derivatives by interpolation, we will
need a uniformly spaced interpolation polynomial of at least
order 15 to yield the desired precision. That is, we must
evaluate the funcrion at least 16 times.

As a sccond example, Table 4 lists results for the integral
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The agreement is already very good for a reasonably wide
interval. Again comparing with Thompson’ formula, we see
that for the function (1 + Y™, whose singularities lie a dis-
tance V2 from the point = 1, Nm = 10 for the interval width
A =0.25. That is, we must evaluate terms through the 21st
derivative, requiring either at least 24 function evaluations
(for interpolation) of the storage of 10 derivative formulas
(direct algebraic computation). The sixth-order Gauss-
Legendre method requires only six evaluations of the func-
tion itself,

The Gavss-Legendre rule is more efficient than the Taylor
series approach-cum-interpolation for one simple reason. In
deriving the above estitates, I assumed interpolation in a table
of uniform spacing. Gauss-Legendre quadrature of sth order
approximates the integrand [p( + ) — p(x)}/¢ by a polynomial
of order 2n — 1 (the points and weights comprise 2# free para-
meters®). For zn = 6, we fit an 11th-order polynomial, with the
error proportional to the 12th derivaiive of the integrand but
with an exceedingly small coefficient, of order 1.5 x 1072, No
wonder the precision is good.

You can find pval . £, a program that evaluates I (x) by
the sixth-order Gauss-Legendre method, at landaul,
phys.virginia.edu/classes/551/programs.htm. The program
is written in ANS Forth {my current language of choice) but

. employs a Fortran-like seyle for ease of translation. A more

general routine would take as input parameters the interval’s
endpoints, (#, b); the singularity’s location; and the desired
interval’s width, A. It might even adjust A adaptively to ob-
tain the hest convergence. The program adpt_g3.£ (and
the auxiliary FORmula TRANslator ftraniil. £) is avail-
able at the same site and could easily be used to create an ef-
ficient generalized subroutine. &
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Generating problem formulas with symbolic programming languages

Here is a Mathematica script that solves Kirchhoff's rules
for the currents in Problem 4 in terms of the randomly set
resistor values,

Solve{{30 -i1 *(r1 +12) -i3*r4==0,6+i3*rd -i2*r3
==0, i1 =i2 +i3}, {i1,i2,i3}]

This will generate expressions for the three currents,
which you can then reformat for use with VbScript. For ex-
ample, examine the lines beginning with “correct = * in

4_1.asp to see the result for 5. When you are through, you
can check your new Web problem using specific answers
generated by Mathematica. For example, suppose your
browser contains the following data for this problem:
R1=9Q,R2=8Q, R3=6Q, and R4 = 10, Append the
string “ ./ {r1 -> 9, r2 -> 8, r3 > 6, r4 -> 1}" (do not include
the quotes) to the end of the line above, Mathematica will re-
turn 78/125 for I3, which you should then enter into the form
as a decimal number. If this answer is accepted, you have
programmed the formula script correctly,

answer scripts must utilize symbolic ex-
pressions for the three currents in terms
of arbitrary resistor values. In cases
where the algebra is quite involved (such
as Problem 4), symbolic programming
environiments such as Mathematica or
Maple can help generate the required
formulas (for more details, sce the side-
bar “Generating problem formulas with
symbolic pro- gramuining languages”).

fter more than three years of

using this Web application for
calculus-based introductory physics
coutses, I can give testimonial evidence
that Web homework has made a re-
markable difference in my students’
ability to tackle standard physics prob-
lems, improving both their competency

and their grades. My students also do
hetter on tests now. I get beautiful vec-
tor diagrams on problems that involve
vectors, and far more accurate numbers.
Although I have no formal assess-
ment results to report, Thave a few hy-
potheses about the success of the sys-
tem. Maybe its the instantaneous
feedback, or the happy face—but stu-
dents rarely give up on 2 Web home-
work problem. They can’t hurt their
grade by tinkering, so they tinker a lot.
Sometimes they waste a lot of time
spinning their wheels with silly mis-
takes, but mostly they spend a lot of
time reading the book or working in
groups to resolve their difficulties. I
consistently get overall homework av-
erages of around 90%. Overall, the en-
tite learning experience is positive. 8
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