
2 Published by the IEEE CS and AIP 1521-9615/03/$17.00 © 2003 IEEE COMPUTING IN SCIENCE & ENGINEERING

Editors: Isabel Beichl, isabel.beichl@nist.gov

Julian V. Noble, jvn@virginia.edu

PRESCRIPTIONSC O M P U T I N G P R E S C R I P T I O N S

and elegant way to translate certain mathematical relations
into programs, and it’s a great technique for discovering ef-
ficient algorithms. Given its utility, you might wonder why
people seldom use it. Here are just some of the reasons why:

• Not all computer languages permit recursion (although
most do today). Recursion seems arcane to scientific pro-
grammers of my generation who grew up with Fortran,
which forbade it. (Fortunately, Fortran 90 and later ver-
sions have remedied this.)

• Not all languages that permit recursion make it easy, es-
pecially for non-textbook examples (as I recently learned
when translating some algorithms to C).

• Although useful, recursion is never essential: by theorem,
a recursive algorithm can always be re-expressed non-re-
cursively.1

• Recursive programs are generally believed to execute
slower or to use more memory than their non-recursive
equivalents. Poor examples have reinforced this negative
impression; ditto for languages that implement recursion
inefficiently.

Correctly used, recursion is so valuable you should use it
whenever it makes programs clearer or briefer. In this in-
stallment of Computing Prescriptions, I explain when re-
cursion is appropriate and when it is a bad idea. I also show
how you might find it useful.

How Recursion Works
Typically, recursive program A can call itself or subprogram
B, which in turns calls program A (or B could call C, which
then calls A). The first form is called direct recursion; the
second is indirect (see Figure 1).

To understand how a subroutine can call itself, we must
first explore how subroutine calls are compiled to machine
code. Compilers have several options for compiling argu-
ment lists:

• They can reserve space in a memory area assigned to the
called subprogram. Calling the subprogram means copy-
ing each argument to its new location. Exiting pastes the
results back to the memory space in the calling program.
This is called passing by value.

• A more streamlined method (pass by reference) merely
passes the arguments’ addresses, keeping in memory only
one copy of the argument itself.

• The arguments can be pushed onto the machine stack (see
Figure 2).

The compiler builds stack-relative pointers into each
subprogram that indicate where on the stack its arguments
are located. The compiler also installs instructions that re-
set the stack pointer when the subprogram exits, thereby
dropping the arguments from the stack and reclaiming the
temporary memory. Neither passing by value nor by refer-
ence lends itself to recursion, because these methods store
the arguments in fixed memory locations that must be ei-
ther shared between, or duplicated within, calling and
called subprograms.

Self-reference requires the called subprogram’s arguments
to be physically distinct from the calling program’s. Passing
arguments in distinct stack frames (one for each call) keeps
the arguments separate. Calling the recursive function
fib(n), for example, pushes n onto the stack; fib then tests
whether n ≤ 0 or n = 1. In these cases, it returns 0 or 1 and
terminates, popping the stack as appropriate. If n > 1, fib
pushes n – 1 onto the stack and transfers control to the en-
try point of its own code, thereby calling itself. When it re-
turns the answer from that call, fib then pushes n – 2 onto
the stack and calls itself again. Finally, it adds the second re-
sult to the first and exits. Manifestly, using a stack puts the
arguments of calling and called subprograms in different
places, even when the programs themselves are the same
and occupy the same memory.

RECURSES!
By Julian V. Noble

T HIS COLUMN IS ABOUT RECURSION:

FUNCTIONS, SUBROUTINES, AND EVEN

WHOLE COMPUTER LANGUAGES DEFINED IN

TERMS OF THEMSELVES. RECURSION IS A DIRECT

MAY/JUNE 2003 3

Inefficient Recursion
The Fibonacci sequence, like the game of golf, offers scope
for folly on a grand scale. Its defining relation is

Fn+1 = Fn + Fn–1, (1)

where (F0 = 0 and F1 = 1) and its direct translation to pseudo
code2 are both recursive:

FUNCTION fib(n)

CASE

n <= 0 OF RETURN 0 ENDOF

n = 1 OF RETURN 1 ENDOF

n > 1 OF RETURN fib(n – 1) + fib(n – 2)

ENDOF

ENDCASE

Anyone who has tried this knows it’s mighty slow compared
with the explicit loop

FUNCTION fib(n)

F0 = 0

F1 = 1

CASE n <= 0 OF RETURN F0 ENDOF

n = 1 OF RETURN F1 ENDOF

n > 1 OF

FOR K = 2 TO n

F = F1 + F0

F0 = F1

F1 = F

NEXT

RETURN F ENDOF

ENDCASE

Why is the iterative loop, whose running time is O(n) (that
is, linear in n), so much faster? The time to compute Fn re-
cursively satisfies the linear difference equation

Tn+1 = Tn + Tn–1, (2)

whose solution has the form.

(3)

The first term dominates for large n, hence, the running
time increases exponentially with n. (Interestingly, we can
compute—recursively—the nth Fibonacci number in

O(log2n) time,3,4 but space limitations defer that discussion
to another column.) From this, we learn recursion is ineffi-
cient when it replaces the original problem with two similar
problems of nearly the same size as the original, because this
leads to exponential growth of the running time.

Caesarian Recursion: Divide and Conquer
Julius Caesar discovered that it was easier to solve a prob-

T a bn

n n

= +()





+ −()





1
2

5 1
1
2

5 1

Direct recursion

Some
stuff

Call A

A

Some
stuff

Call B

A

Other
stuff

Call A

B

Indirect recursion

Figure 1. Direct and indirect recursion. The subroutine on the
left calls itself—that is, it places parameters on the stack and
transfers control to its entry point (labeled A). The pair of
subroutines on the right call each other—A calls B, which in
turn calls A, closing the recursive loop.

D
escending m

em
ory

Top Of Stack

Figure 2. The machine stack. A CPU stack is a contiguous area
of memory, organized as a last-in, first-out buffer. Most CPUs
extend stacks downward from high memory, to separate them
from program and data (which usually extend upward from
low memory). The figure shows several successive items
placed on the stack, with c (top of stack or TOS) the lowest
item in physical memory and b and a in the two next higher
memory cells (although we say they are lower on the stack).
To push c onto the stack, the pointer to TOS is decremented
and c moves to the new TOS cell; to pop c from the stack, c
moves to its new location and the TOS pointer increments, so
that TOS now contains item b. To drop c from the stack, just
increment the TOS pointer.

4 COMPUTING IN SCIENCE & ENGINEERING

lem of size N by dividing it into two problems of size N/2
and tackling them one at a time (rather than by attacking the
original problem head-on). If we can combine the solutions
to the subproblems in time O(N), and if the running time of
the basic algorithm is a power Nα, α > 1, divide and conquer
is a winning strategy because N + 2(N/2)α < Nα if N > Nmin
= (1 – 21–a)–1/(a–1) (for example, with α = 2, Nmin = 2). These
considerations suggest recursion is most efficient when it re-
places the original problem with (one or two) similar prob-
lems roughly half the original size. That is, we should con-
sider recursion only when dividing (and, one hopes,
conquering).

Let’s look at some examples. Binary search replaces the
original problem with the same problem, only half as big.
Usually applied to finding an item in a sorted list, it is also
good for locating an isolated root5 in the interval L ≤ x ≤ U
via these steps:

• If f(L) ⋅ f(U) > 0, exit: error message
• If |L – U| < ε, exit: root found
• Let M = (L + U)/2
• If f(M) ⋅ f(L) > 0, let L = M; else let U = M
• Recurse

At each pass, the interval to be searched halves, so O(–lgε)
steps are needed.

A standard sorting algorithm, MergeSort, helps over-
worked professors alphabetize piles of graded papers:

• Divide the items into two equal subpiles
• Sort those
• Merge the subpiles (merging requires N operations)

MergeSorting each subpile lets us subdivide them until
each pile contains only one item, hence, we can call it sorted.
Because MergeSort replaces the original problem with two
of half that size, its running time satisfies the relation

TN = 2TN/2 + λN, (4)

whose solution is TN = λNlgN, of the same order as Quick-
Sort or HeapSort. A recursive implementation looks like

SUBROUTINE MergeSort(list)

length(list) < 1?

IF Error message

ELSE

length(list) > 1?

IF partition(list, list1, list2)

MergeSort(list1)

MergeSort(list2)

merge(list1, list2, list)

ENDIF

ENDIF

The venerable Euclidean algorithm for finding the great-
est common divisor (gcd) of two integers is also most easily
stated recursively:

(5)

In words, the greatest common divisor of positive integers a
and b is the same as that of the integers b and (a, mod b).6 An-
other important fact is that for integers a and b, integers x,y
exist such that

gcd(a,b) = xa + yb. (6)

Certain encryption algorithms use x and/or y. Because we
can define them recursively,7

(7)

d a b xa yb d b a b
x b y a b

x b y a
a
b

b

= = + = ≡
= +

= + −













gcd(,) ' gcd(, mod)
' '(mod)

' ' ;

gcd(,)

,
gcd(, mod),a b
a b

b a b b=
=
>





0
0

C O M P U T I N G P R E S C R I P T I O N S

a" C" b"

a' c' b'

a c = (a + b) / 2 b

Figure 3. Successive subintervals. Defined by their endpoints (large triangles), these subintervals are passed as arguments in
recursive calls of the function integral. (Table 1 also displays these subintervals.)

MAY/JUNE 2003 5

that is,

(8)

we can express Equation 6 entirely recursively:

FUNCTION xgcd(a,b,x,y) \ gcd = x*a + y*b

b=0 ?

IF gcd = a

x = 1

y = 0

ELSE c = [a/b] \ integer division

gcd = xgcd(b, a mod b, x’, y’)

\ recurse

x = y’ \ recurse

y = x’ - c*y’

END IF

RETURN gcd

I programmed this in Forth, exhibiting the stack at each en-
try and exit as xgcd calls itself:

99 78 xgcd

xgcd [2] 99 78

xgcd [2] 78 21

xgcd [2] 21 15

xgcd [2] 15 6

xgcd [2] 6 3

xgcd [2] 3 0

exit [3] 3 1 0

exit [3] 3 0 1

exit [3] 3 1 -2

exit [3] 3 -2 3

exit [3] 3 3 -11

exit [3] 3 -11 14 ok

(You can visit www.phys.virginia.edu/classes/551.jvn.
fall01/CiSE_progs/Cprogs.html for C and Forth versions
of all my examples.) If you lack a Forth compiler but want
to experiment, you can choose a public-domain one from
the wide selection (listed by CPU and operating system) at
www.forth.org/compilers.htm.

Recursive versions of Euclid’s algorithm are highly effi-
cient. Although the algorithm can be expressed iteratively,8

iteration requires more data movement, is less clear, and is
often slower.

As a final application of divide and conquer, let’s consider
adaptive numerical integration. We want to evaluate

, (9)

where RN is the error term, and xn and wn are a numerical quad-
rature formula’s points and weights. For fixed absolute precision
|RN| < ε, the most efficient strategy for estimating I concen-
trates the xn where f(x) varies most rapidly. This is the adaptive
aspect. The justly renowned book Numerical Recipes9 suggests
doing this by converting Equation 9 to a differential equation

, (10)

where F(a) = 0. We integrate Equation 10 with a canned
adaptive solver. Unfortunately, this approach does not spec-
ify the result’s absolute precision ab initio. As an alternative,
compute IL+R with a standard formula on the entire interval,
then IL and IR on each half of that interval. If |IL + IR – IL+R|
< ε, accumulate the result; otherwise, subdivide each half-in-
terval in turn and repeat (see Figure 3).

Here is pseudo code for Simpson’s Rule with Richardson
extrapolation:10

FUNCTION simpson (a,b,dummy)

f1 = dummy(a)

f2 = dummy((a+b)/2))

f3 = dummy(b)

RETURN (f1 + 4*f2 + f3) * (b - a)/3

FUNCTION integral (a,b,eps,dummy)

c = (a + b) / 2

OldInt = simpson(a,b,dummy)

NewInt = simpson(a,c,dummy)

+ simpson(c,b,dummy)

ABS(OldInt - NewInt) < eps ?

IF RETURN NewInt + (NewInt - OldInt)/15

\ extrapolate

ELSE RETURN integral(a,c,dummy,eps/2)

+ integral(c,b,dummy,

eps/2) \ recurse

ENDIF

dF
dx

f x= ()

I f x dx f x w Rn n N

n

N

a

b
= = +

=
∑∫ () ()

1

d d
x y

y x
a
b

y

=
=

= −






'
'

' ' ,

6 COMPUTING IN SCIENCE & ENGINEERING

Table 1 shows the intermediate output obtained from
integrating from x = 0 to x = 1 with the precision set
to 0.001.

You’ve probably noticed that the program evaluates the
function multiple times at adjoining endpoints. We can fix
this by passing such function values as arguments (on the
stack), but this might make the stack too deep—and dra-
matically conclude program execution. Other ways to get
around this exist, as we will see in a future column.

Recursive Descent Parsing
Consider the preceding examples, bad and good, as warm-
up exercises. Now we can look at how recursion comes into
its own. Most modern languages (with the notable excep-
tions of Lisp and Forth) have built-in support for formula
translation. A long time ago, I added this facility to Forth
because a formula is self-documenting, whereas its transla-
tion to postfix form is as indecipherable as its translation to
machine language. (My FORmula TRANslator—a few hun-
dred lines of Forth—resides at www.phys.virginia.edu/
classes/551.jvn.fall01/programs.htm.)

Formula translation is an instance of rule-based program-
ming. We can specify a “Forth-tran” formula by rules stated
in a specialized format devised by John Backus (one of For-
tran’s designers) and Peter Naur (one of Algol’s designers):

“Forth-tran” Rules in BNF (Backus-Naur Format)

NOTATION:

| -> “or”

+ -> “unlimited repetitions”

Q -> “empty set”

& -> + | -

% -> * 1/

NUMBERS:

fp# -> {-|Q}{digit.digit+ |.digit

digit+} exponent

exponent -> {dDeE {&|Q} digit {digit|Q}

{digit|Q} | Q}

FORMULAS:

assignment -> id = expression

id -> name|name {+ Forth}+ –curly

braces balance!

name -> letter {letter|digit}+

arglist -> (expression {, expression}+)

function -> name arglist

expression -> term | expression & term

term -> factor | term % factor

factor -> id | fp# | (expr) | f∧f |

function

In everyday language, the line defining expression reads
“An expression consists of either a single term; or of an ex-
pression, followed by a plus or minus sign, followed by a
term.” Similarly, “A term is a factor; or a term, followed by a
multiply or divide sign, followed by a factor.” A factor can be
one of five different things, two of them elementary (a num-
ber or a variable) and three more complicated: an expression
enclosed in parentheses, a factor raised to the power of an-
other factor, and a function.

I have stated these rules in Backus-Naur format (BNF) to
show you how recursive the definitions are. That is, expres-
sion is defined in terms of term and expression as shown graph-
ically in Figure 4.

For the subroutine in Figure 4 to work correctly, the func-
tion find must not find an operator “hidden” in parentheses
or in a floating-point number’s exponent field. That is, find
must locate only “exposed” operators. (This is best accom-
plished by defining find as a finite-state machine.) The sub-
routine factor is defined with a CASE or SWITCH statement:

 x

C O M P U T I N G P R E S C R I P T I O N S

Table 1. Intermediate output from adaptive recursive integration.

a b ε
0.0 1.953125E–03 1.953125E–06 5.677541E–05
1.953125E–03 3.906250E–03 1.953125E–06 1.052158E–04
3.906250E–03 0.0078125 3.906250E–06 2.975953E–04
0.0078125 0.015625 7.812500E–06 8.417267E–04
0.015625 0.03125 1.562500E–05 2.380762E–03
0.03125 0.0625 3.125000E–05 6.733813E–03
0.0625 0.125 0.0000625 0.0190461
0.125 0.25 0.000125 5.387051E–02
0.25 0.5 0.00025 0.1523688
0.5 1.0 0.0005 0.4309641

dx x = 0.6666653
0

1∫

dx x
a

b∫

MAY/JUNE 2003 7

SUBROUTINE factor(beg, end)

CASE

id OF do_id(beg, end) ENDOF

fp# OF do_fp(beg, end) ENDOF

f∧f OF do_power(beg, end) ENDOF

(expr) OF expression(beg+1, end-1)

ENDOF

function OF do_funct(beg, end) ENDOF

END CASE

We can write the entire program recursively like this so that
it generates the appropriate output from the input text. Note
especially that because term calls factor, which then calls
expression, the recursion is indirect but mirrors the rules
precisely.

Symbolic manipulation
Because I plan to discuss computer algebra in a future col-
umn, I won’t dwell on it here. An algebra program uses the
same principles as a compiler: it translates statements in one
language to another, perhaps performing manipulations dur-
ing the process. The key again is to work out the rules and
implement them. For example, the rules for differentiating
a function are

diff [αf(x) + βg(x)] = α diff [f(x)] + β diff [g(x)]
diff [f(x) ⋅ g(x)] = g(x) diff f(x) + f(x) diff g(x)
diff f(g(x)) = diff g(x) diff f(g), (11)

to which we add a library of derivatives of known functions.
Many algebraic operations (such as differentiation) are innately
recursive, hence, we can translate them directly to a recursive
program. I’ll also defer those details to a future column.

I hope these illustrations have shown you some of the
power and elegance of recursion. To see the difference

between recursive and iterative versions of several codes,
please check my Web site. Expect lots more recursive appli-
cations in future articles.

References
1. R.L. Kruse, Data Structures and Program Design, 2nd ed., Prentice-Hall,

1987.

2. B. Einarsson and Y. Shokin, Fortran 90 for the Fortran 77 Programmer,
version 2.3, 1996, www.nsc.liu.se/~boein/f77to90.

3. E.B. Escott, “Procédé Expéditif pour Calculer un Terme très Éloigné dans
la Série de Fibonacci” (“Fast Algorithm for Calculating Remote Terms in

the Fibonacci Series”), L’Intermédiaire des Mathématiciens (Mathemati-
cian’s J.), vol. 7, 1900, pp. 172–175.

4. J.C.P. Miller and D.J. Spencer Brown, “An Algorithm for Evaluation of
Remote Terms in a Linear Recurrence Sequence,” Computer J., vol. 9,
1966, pp. 188–190.

5. F.S. Acton, Numerical Methods that Work, Mathematical Assoc. America,
1990, p. 179.

6. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, 5th ed., A.K.
Peters Ltd., 1996.

7. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms,
MIT Press, 1990.

8. D.E. Knuth, The Art of Computer Programming, 3rd ed., Addison Wesley
Longman, 1997, p. 13ff.

9. W.H. Press et al., Numerical Recipes: The Art of Scientific Computing, Cam-
bridge Univ. Press, 1986.

10. A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, 1965, p.
118ff.

Julian Noble is a physics professor at the University of Virginia. His in-

terests are eclectic, both in and out of physics. His teaching philosophy

is “no black boxes.” Contact him at the Dept. of Physics, Univ. of Vir-

ginia, PO Box 400714, Charlottesville, VA 22904-4714; jvn@virginia.edu.

Expression

Find + or -

Found?

No

Term Expression

Term

Yes

Figure 4. A graphic representation of pseudo code for the
subroutine expression. Starting from the right end of the
string, expression looks for an exposed + or – sign. If it
finds one, it breaks the string there and treats it as an
expression plus a term; if it finds no exposed sign, it treats the
whole string as a term. Thus it embodies both direct recursion
(when expression calls itself), and indirect recursion (when
expression calls term).

