Bicycles 2

Bicycles 4

Ricycles 6

Question:

- How would raising the height of a small pickup truck affect its turning stability?
- 1. Make it less likely to tip over.
- 2. Make it more likely to tip over.
- 3. Have no overall effect on its stability.

Observations About Bicycles

- · Impossible to keep upright while stationary
- · Easy to keep upright while moving forward
- Require leaning during turns
- Can be ridden without hands
- · Are easier to ride when they have gears

Vehicle's Static Stability, Part 1

- Static stability is determined by
 base of support:
 - polygon formed by ground contact points – center of gravity:
- effective point at which gravity acts • Static stability occurs when
 - center of gravity is above base of support

Bicycles 5

Bicycles 3

Vehicle's Static Stability, Part 2

- Center of gravity above base of support,
 - gravitational potential rises when tipped
 - accelerates away from direction of tip
 - vehicle always returns to equilibrium
 - vehicle in stable equilibrium (statically stable)

Vehicle's Static Stability, Part 3

- Center of gravity not above base of support,
 - gravitational potential drops when tipped
 - accelerates in direction of tip
 - vehicle never returns to equilibrium
 - vehicle tips over (statically unstable)

Bicycles 9

Vehicle's Static Stability, Part 4

- · Center of gravity is above edge of base,
 - vehicle in unstable equilibrium
 - accelerates in direction of any tip
 - vehicle never returns to this equilibrium

Bicycles 8

Stationary Vehicles

- Base of support requires ≥3 contact points
- Tricycles
 - have 3 contact points
 - are statically stable and hard to tip over

Bicycles

Bicycles 10

- have only 2 contact points
- are statically unstable and tip over easily

Vehicle's Dynamic Stability, Part 1

Dynamic stability is determined by

 statics: base of support, center of gravity
 dynamics: inertia, accelerations, horiz. forces

Vehicle's Dynamic Stability, Part 2

- Dynamic effects can fix a vehicle's stability
 place base of support under center of gravity
 - dynamically stabilize an equilibrium
 - make vehicle dynamically stable

Bicycles 11

Vehicle's Dynamic Stability, Part 3

- Dynamic effects can ruin a vehicle's stability
 - displace base of support from center of gravity
 - dynamically destabilize an equilibrium
 - make vehicle dynamically unstable

Bicycles 12

Moving Vehicles

- Tricycles
 - can't lean during turns
 - dynamically unstable and easy to flip
- · Bicycles
 - can lean during turns to maintain stability
 - naturally steer center of gravity under base
 - dynamically stable and hard to flip

Bicycle's Automatic Steering

- A bicycle steers automatically
 - places base of support under center of gravity
 - due to gyroscopic precession of front wheel (ground's torque on spinning wheel steers it)
 - due to design of its rotating front fork (fork steers to reduce gravitational potential)

Bicycles 14

Torques and Tipping Over

- Torques act about bicycle's center of mass
 - Support force acts at wheels, causes torque
 - Friction acts at wheels, causes torque
 - Weight acts at center of mass, no torque
- If torques don't cancel
 - net torque on bicycle
 - bicycle undergoes angular acceleration
 - bicycle tips over

Bicycles 15

Leaning During Turns, Part 1

- When not turning and not leaning,
 - zero support torque (force points toward pivot)
 - zero frictional torque (no frictional force)

bicycle remains upright

Leaning During Turns, Part 2

Bicycles 16

- When turning and not leaning,
 - zero support torque (force points toward pivot)
 - nonzero frictional torque (frictional force)
 - bicycle flips over

Bicycles 17

Leaning During Turns, Part 3

- When turning and leaning correctly,
 - nonzero support torque (force not at pivot)
 - nonzero frictional torque (frictional force)
 - two torques cancel (if you're leaning properly)
 - bicycle remains at steady angle
- Bicycles can lean and thus avoid flipping
- Tricycles can't lean so flip during turns

Bicycles 18

Question:

- How would raising the height of a small pickup truck affect its turning stability?
- 1. Make it less likely to tip over.
- 2. Make it more likely to tip over.
- 3. Have no overall effect on its stability.

Gear Selection

- · From rider's perspective, ground is moving
- With each crank, ground moves a distance
 Ground distance covered increases with gear
 - Work done per crank increases with gearPedal forces must increase with gear
- High gear yields high speed (level road)
- Low gear yields easy pedaling (steep hills)

Bicycles 20

Mechanical Advantage

- Gears allow you to exchange force for distance or distance for force.
- On hills, low gear lets your feet move large distances to exert large force on wheel.
- On descents, high gear lets your feet push hard to move rear wheel long distances.

Bicycles 21

Rolling and Energy

- Wheel rim moves and spins.
- A kilogram in the wheel rim has twice the kinetic energy of a kilogram in the frame.
- To start the bicycle moving, you must provide its energy.
- Massive bicycles, particularly with massive wheels, are hard to start or stop.

Rolling Resistance

Bicycles 22

- · As a wheel rolls, its surface dents inward
- · Denting a surface requires work
- An underinflated tire
 - has a low coefficient of restitution
 - doesn't return work done on it well
 - wastes energy as it rolls

Bicycles 23

Braking

- Sliding friction wastes bicycle's and rider's kinetic energies as thermal energy.
- Braking power is proportional to:
 - sliding frictional force between pads and rim
 - support force on brake pads
 - tension of brake cable
 - force on brake levers

Braking problems

Bicycles 24

- · Brake too hard,
 - wheels stop rotating and start skidding
 - energy is wasted and steering fails
- · Slowing force exerts a torque on bicycle
 - Rider and bicycle can flip head first
 - Rear wheel loses traction and may "fishtail"
 - Front wheel has improved traction

Summary About Bicycles

- Are statically unstable
- Are dynamically stable
- Naturally steer under your center of gravity
- Use gears for mechanical advantage
- Use work from you to get started
- Convert work into thermal energy to stop