Question:

• If you place a tennis ball on a basketball and drop this stack on the ground, how high will the tennis ball bounce?

• To approximately its original height.
• Much higher than its original height.
• Much less than its original height.

Observations About Bouncing Balls

• Some balls bounce better than others
• Underinflated balls bounce poorly
• Balls don’t bounce higher than they started
• Ball can bounce from moving objects

Bouncing from Rigid, Motionless Surfaces

• Approaching ball has “collision” KE.
• During impact, ball has elastic PE.
• Rebounding ball has “rebound” KE.
• Some collision energy becomes thermal.
 – “Lively” balls lose little energy.
 – “Dead” balls lose much energy.
• In general: rebound KE < collision KE

Coefficient of Restitution

• Measure of a ball’s liveliness.
• Ratio of outgoing to incoming speeds.

Coefficient of restitution =

\[
\text{Outgoing speed} / \text{Incoming speed}
\]
Bouncing from Moving Surfaces

- Incoming speed → Approaching speed.
- Outgoing speed → Separating speed.
- Coefficient of Restitution becomes:

\[
\text{Coefficient of restitution} = \frac{\text{Separating speed}}{\text{Approaching speed}}
\]

Ball and Bat Part 1

- Ball approaches home plate at 100 km/h.
- Bat approaches pitcher at 100 km/h.
- Approaching speed is 200 km/h.

Ball and Bat Part 2

- Approaching speed is 200 km/h.
- Baseball’s Coefficient of Restitution: 0.55.
- Separating speed is 110 km/h.

Ball and Bat Part 3

- Separating speed is 110 km/h.
- Bat approaches pitcher at 100 km/h.
- Ball approaches pitcher at 210 km/h.

Question:

- If you place a tennis ball on a basketball and drop this stack on the ground, how high will the tennis ball bounce?
- To approximately its original height.
- Much higher than its original height.
- Much less than its original height.

Bouncing’s Effects on Objects

- Bouncing involves momentum transfer
 - Momentum transferred while stopping
 - Momentum transferred while rebounding
 - A better bounce transfers more momentum
- Bouncing can involve energy transfer
- Together, these transfers govern bouncing
 - Identical elastic balls transfer motion perfectly
Impact Forces

- Harder surfaces bounce faster
 - Momentum is transferred faster
 - Time is shorter, so force is larger
- No one likes bouncing off hard surfaces

Ball’s Effects on a Bat

- Ball pushes bat back and twists it, too
- When ball hits bat’s center of percussion,
 - backward and rotational motions balance.
 - handle doesn’t jerk.
- When ball hits vibrational node
 - bat doesn’t vibrate.
 - more energy goes into ball.

Summary About Bouncing Balls

- Each ball has a coefficient of restitution
- Energy lost in a bounce becomes thermal
- The surface can affect a ball’s bounce
- Surfaces bounce, too.