

Bumper Cars 2

Question:

- You are riding on the edge of a spinning playground merry-go-round. If you pull yourself to the center of the merry-go-round, what will happen to its rotation?
- · It will spin faster.
- It will spin slower.
- It will spin at the same rate.

Bumper Cars 3

Observations About Bumper Cars

- · Moving cars tend to stay moving
- · It takes time to change a car's motion
- · Impacts alter velocities & ang. velocities
- · Cars seem to exchange their motions
- Heavily loaded cars are hardest to redirect
- Heavily loaded cars pack the most wallop

Bumper Cars 4

Momentum

- Translating bumper car carries momentum
- Momentum
 - A conserved quantity (can't create or destroy)
 - A directed (vector) quantity
 - Measures difficulty reaching velocity
 Momentum = Mass · Velocity

Bumper Cars 5

Exchanging Momentum

- Impulse
 - The only way to transfer momentum
 - Impulse is a directed (vector) quantity
 - Impulse = Force · Time
- Because of Newton's third law, if object 1 gives an impulse to object 2, then object 2 gives an equal but oppositely directed impulse to object 1.

Bumper Cars 6

Head-On Collisions

- Cars exchange momentum via impulse
- Total momentum remains unchanged
- The least-massive car experiences largest change in velocity

Bumper Cars 7

Angular Momentum

- A spinning car carries angular momentum
- · Angular momentum
 - A conserved quantity (can't create or destroy)
 - A directed (vector) quantity
 - Measures difficulty reaching angular velocity
 - Angular momentum = Moment of inertia · Angular velocity

Bumper Cars 8

Newton's Third Law of Rotational Motion

• For every torque that one object exerts on a second object, there is an equal but oppositely directed torque that the second object exerts on the first object.

Bumper Cars 9

Exchanging Angular Momentum

- Angular Impulse
 - The only way to transfer angular momentum
 - Angular impulse is a directed (vector) quantity
 Angular impulse = Torque · Time
- Because of Newton's third law, if object 1 gives an angular impulse to object 2, then object 2 gives an equal but oppositely directed angular impulse to object 1.

Glancing

Bumper Cars 10

Collisions

- Cars exchange angular momentum via angular impulse
- Total angular momentum about a chosen point in space remains unchanged
- The car with smallest moment of inertia about that chosen point experiences largest change in angular velocity

Bumper Cars 11

Changing Moment of Inertia

- Mass can't change, so the only way an object's velocity can change is if its momentum changes
- Moment of inertia can change, so an object that changes shape can change its angular velocity without changing its angular momentum

Bumper Cars 12

Question:

- You are riding on the edge of a spinning playground merry-go-round. If you pull yourself to the center of the merry-go-round, what will happen to its rotation?
- · It will spin faster.
- It will spin slower.
- It will spin at the same rate.

Bumper Cars 13

Kinetic Energy

- A moving bumper car has kinetic energy: Kinetic energy = ½ · Mass · Speed²
- A spinning bumper car has kinetic energy: Kinetic energy = ½ · Moment of inertia · Angular speed²
- A typical bumper car has both
- · High impact collisions release lots of energy!

Bumper Cars 14

Physics Concept

• Acceleration always occurs toward the direction that reduces an object's potential energy as rapidly as possible.

Bumper Cars 15

Summary about Bumper Cars

- During collisions, they exchange
 momentum via impulses
 - angular momentum via angular impulses
- · Collisions have less effect on
 - cars with large masses
 - cars with large moments of inertia