

Clocks 2

Clocks 4

Question:

- You're bouncing gently up and down at the end of a springboard, without leaving the board's surface. If you bounce harder, the time it takes for each bounce will
- become shorter
- become longer
- · remain the same

Clocks 3

Observations About Clocks

- They divide time into uniform intervals
- They count the passage of those intervals
- Some involve obvious mechanical motions
- Some seem to involve no motion at all
- They require an energy source
- · They have limited accuracy

Non-Repetitive Clocks

- Measures a single interval of time
 - Sandglasses
 - Water clocks
 Candles
 - Candles
- Common in antiquity
- Poorly suited to subdividing the day
 - Requires frequent operator intervention
 Operator requirement limits accuracy

Repetitive Motions

Clocks 5

- An object with a stable equilibrium tends to oscillate about that equilibrium
- This oscillation entails at least two types of energy – kinetic and a potential energy
- Once the motion has been started, it repeats spontaneously many times

Clocks 6

Repetitive-Motion Clocks

- Developed about 500 years ago
- Require no operator intervention
- · Accuracy limited only by repetitive motion
- Motion shouldn't depend on externals:
 - temperature, air pressure, time of day
 - clock's store of energy
 - mechanism that observes the motion

Some Specifics

Clocks 7

- Terminology
 - Period: time of full repetitive motion cycle
 - Frequency: cycles completed per unit of time
 - Amplitude: peak extent of repetitive motion
- Application
 - In an ideal clock, the repetitive motion's period shouldn't depend on its amplitude

A Harmonic Oscillator

Clocks 8

- A system with a stable equilibrium and a restoring force that's proportional to its distortion away from that equilibrium
- · A period that's independent of amplitude
- Examples:
 - Pendulum
 - Mass on a spring

Crocks 9 Question: You're bouncing gently up and down at the end of a springboard, without leaving the board's surface. If you bounce harder, the time it takes for each bounce will become shorter

become longer

Clocks 11

remain the same

Limits to the Accuracy

Clocks 10

- Fundamental limits:
 - Oscillation decay limits preciseness of period
- Practical Limits:
 - Sustaining motion can influence the period
 - Observing the period can influence the period
 - Sensitivity to temperature, pressure, wind, ...

Pendulums Pendulum (almost) a harmonic oscillator Period proportional to (length/gravity)^{1/2} Period (almost) independent of amplitude

Pendulum Clocks

Clocks 12

- Pendulum is clock's timekeeper
- For accuracy, the pendulum
 - pivot–center-of-gravity distance is
 temperature stabilized
 - adjustable for local gravity effects
 streamlined to minimize air drag
- motion sustained, measured gently
- Limitation: clock mustn't move

Balance Ring Clocks

Clocks 13

Clocks 15

- A torsional spring causes a balance-ring harmonic oscillator to twist back and forth
- Gravity exerts no torque about the ring's pivot and has no influence on the period
- Twisting is sustained and measured with minimal effects on the ring's motion

Quartz Oscillators Part 1

Clocks 14

- Crystalline quartz is a harmonic oscillator
 Crystal provides the inertial mass
- Stiffness provides restoring force
- Oscillation decay is extremely slow
- Fundamental accuracy is very high

Quartz Oscillators Part 2

Quartz is piezoelectric

 mechanical and electrical changes coupled
 motion is induced and measured electrically

Quartz Clocks

Clocks 16

- Electronic system starts crystal vibrating
- · Vibrating crystal triggers electronic counter
- Nearly insensitive to gravity, temperature, pressure, and acceleration
- Slow vibration decay leads to precise period
- Tuning-fork shape yields slow, efficient vibration

Clocks 17

Atomic Clocks Part 1

- Electrons orbit the nucleus of an atom
- Only certain orbits are possible due to quantum mechanical nature of universe
- Associated with each these orbitals is a specific amount of total energy
- Quantum leap from one orbital to another involves a specific amount of energy

Clocks 18

Atomic Clocks Part 2

- Associated with a specific amount of energy is a specific frequency
- Light of a specific frequency carries a certain amount of energy per packet.
- Atoms can only emit or absorb light of specific frequencies: the ones that carry just the right energy to shift electrons between orbitals

Atomic Clocks Part 3

Clocks 19

- Atomic clocks study the interactions of atoms with light
- The atoms act as frequency references for the light: only the right frequency light affects the atoms
- Atomic clocks keep time by with the help of this frequency stabilized light

Clocks 20

Summary About Clocks

- Most clocks involve harmonic oscillators
- Amplitude independence aids accuracy
- Clock sustains and counts oscillations
- Oscillators that lose little energy work best