

Rockets 2

Rockets 4

Question:

- If there were no launch pad beneath the space shuttle at lift-off, the upward thrust of its engines would be
- approximately unchanged.
- approximately half as much.
- · approximately zero.

Observations About Rockets

Rockets 3

- · Plumes of flame emerge from rockets
- · Rockets can accelerate straight up
- Rockets can go very fast
- · The flame only touches the ground initially
- Rockets operate fine in empty space
- · Rockets usually fly nose-first

Momentum Conservation

- · A rocket's momentum is initially zero
- The momentum redistributes during thrust
 Ship pushes on fuel; fuel pushes on ship
 - Fuel acquires backward momentum
 - Ship acquires forward momentum
- Rocket's total momentum remains zero

Rocket Propulsion

Rockets 5

- Neglecting gravity, then – rocket's total momentum is always zero $momentum_{fuel} + momentum_{ship} = 0$
- The momentum of the ship depends on
 - $\mbox{ the momentum of the ejected fuel, or }$
 - the speed of that fuel and
 - the mass of that fuel

Rockets 6

Question:

- If there were no launch pad beneath the space shuttle at lift-off, the upward thrust of its engines would be
- · approximately unchanged.
- approximately half as much.
- · approximately zero.

Rocket Engines

Rockets 7

Rockets 9

- Chemical reactions produce hot, highpressure gas
- Gas speeds up in nozzle
- Gas reaches sonic speed in throat of de Laval nozzle

 Beyond throat, supersonic gas expands to speed up further

Stability and Orientation

Rockets 8

- On ground, rocket needs static stability
- In air, rocket needs aerodynamic stability

 Center of dynamic pressure behind c.o.m.
- In space, rocket is a freely rotating object
 - Orientation governed by angular momentum
 - Rocket can travel in any orientation

Ship's Ultimate Speed

- Increases as
 - ratio of fuel mass to ship mass increases
 - fuel exhaust speed increases
- · If fuel were released with rocket at rest,

speed_{ultimate} = $\frac{\text{mass}_{\text{fuel}}}{\text{mass}_{\text{ship}}} \cdot \text{speed}_{\text{exhaust}}$

• Because rocket accelerates during thrust, ultimate speed is less than given above

Gravity Part 1

Rockets 10

- The earth's acceleration due to gravity is only constant for small changes in height
- When the distance between two objects changes substantially, the relationship is:

force = $\frac{\text{gravitational constant} \cdot \text{mass}_1 \cdot \text{mass}_2}{(\text{distance between masses})^2}$

Rockets 11

Gravity Part 2

- An object's weight is only constant for small changes in height
- When its height changes significantly, the relationship is:

weight = $\frac{\text{gravitational constant} \cdot \text{object} \cdot \text{earth}}{(\text{distance between centers of object and earth})^2}$

Gravity Part 3

- · An object high above the earth still weighs
- Astronauts and satellites have weights

 weights are somewhat less than normal
 weights depend on altitude
- Astronauts and satellites are in free fall

Rockets 13 Orbits Part 1

- An object that begins to fall from rest falls directly toward the earth
- Acceleration and velocity are in the same direction

*Process 14*Orbits Part 2 An object that has a sideways velocity follows a trajectory called an orbit Orbits can be closed or open, and are ellipses, parabolas, and hyperbolas

Rockets 15

Summary About Rockets

- Rockets are pushed forward by their fuel
- Total rocket impulse is the product of exhaust speed times exhaust mass
- Rockets can be stabilized aerodynamical
- Rockets can be stabilized by thrust alone
- After engine burn-out, rockets can orbit