University of Virginia

Department of Physics

Physics 606: How Things Work II

Lecture #20 Slides:

Audio Amplifiers

Recording Details

- Louder sound \rightarrow deeper magnetization
- Higher pitch \rightarrow closer magnetic reversals
- Stereo \rightarrow two separate magnetic tracks/heads
- Noise reduction \rightarrow high pitch expansion
- Pitch control \rightarrow tape speed control
- Sound degradation \rightarrow magnetization damage

Question:

Iron powder sticks to a permanent magnet. If you sprinkle iron powder on a strip of recorded audio tape, will the iron powder stick?

Audio Amplifiers

Question:

If you install a pocket radio's batteries backward, it won't work because its

- 1. speaker will move the wrong direction.
- 2. parts can only conduct current one way.
- 3. batteries will absorb power and recharge.

Speakers

- Sound is produced by a moving surface
- Surface is pushed and pulled magnetically – Surface's wire coil carries current → magnetic
 - Coil is attracted/repelled by stationary magnet
- "Sound" current \rightarrow surface acceleration
- Sound pressure proportional to "sound" current

Microphones (magnetic)

- Sound is received by a moveable surface
- Surface movement produces electric current – Surface's wire coil moves near stationary magnet
 - Electric field pushes current through moving coil
- Sound pressure \rightarrow surface acceleration
- "Sound" current proportional to sound pressure

Microphones (electric)

- Surface movement produces electric current - Surface's charge moves near stationary wire
 - Electric field pushes current through wire

Audio Amplifier

- Three circuits:
 - Input circuit: current/voltage represents sound
 - Output circuit: amplified "sound" current/voltagePower circuit: provides power for amplification
- Amplifier produces "enlarged" copy of input

Amplifier Components

- Resistors provide voltage drops, limit current
- Capacitors store charge, shift voltages
- Diodes one-way devices for current
- Transistors control current flow

Resistors

- Simple ohmic devices
 - Voltage drop is proportional to current
 - Resistance is the proportionality constant
 - Many values of resistance are available
- Reduce a current's voltage
- Produce a current proportional to voltage
- Limit current based on voltage drop

Capacitors

- Two separated conducting surfaces
- Charge (and energy) storage devices
 - One surface is positive, the other negative
 - Charge is proportional to voltage difference
 - Capacitance is proportionality constant
 - Many values of capacitance are available
- Store separated charge and associated energy
- Shift a current's voltage

Diodes

- One-way devices for charge & current
- Usually composed of two semiconductors

Doped Semiconductors

- Pure semiconductors are insulating
 - Valence levels are filled and can't conduct
 - Conduction levels are empty and can't conduct
- Impure semiconductors can be conducting

 Extra valence levels → valence band conduction
 - Extra electrons \rightarrow conduction band conduction