
MEASURING THE SOLAR 
SYSTEM

Eratosthenes, Aristarchus

The century after Euclid

Two remarkable astronomers, Eratosthenes and Aristarchus, 
accomplished what seemed impossible in the ancient world, they measured the 
size of the solar system. It is significant that this took place during the century 
after Euclid. Euclid’s geometry empowered creative people like these two to 
do things they would not otherwise have been able to accomplish.

Solving great problems requires first asking the right question.
The questions we are discussing were posed by these two in geometric terms. 
Once set forth in those terms, the problems became quite straightforward to 
answer as we will see. 

So Euclid’s work was not only the greatest mathematical 
advance of the ancient world, it also allowed others to use those tools to reach 
farther than ever before imagined in understanding the world around us. 



Eratosthenes was a Renaissance Man of his generation in 
ancient Greece (almost 2000 years ahead of his time). He was very good, but 
never the best at whatever he did. He was only the second best mathematician, 
second best poet, second best musician, etc.  In ancient Greece, they used the 
alphabet, alpha, beta, gamma, etc, to indicate first place, second, third, etc. So 
his friends gave him the knickname Beta. 

Well, Beta left his mark on the world, perhaps more so than his 
friends. He managed one of the great accomplishments of the ancient world; 
he measured the size of the earth.   
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Here is how his thinking went. First he believed the Earth to be spherical.  But 
how so?  We all remember the stories of Columbus’ crew thinking they would fall off the 
edge of the earth. Somehow the Greeks had believed  the earth to be spherical since way 
back. Pythagoras described is that way around 500 BCE. 

There may have been evidence for this belief: The Greeks were a seagoing 
nation. When two ships approach each other at sea, the other ship appears to rise up out of the 
water. From a distance, you only see the top ofthe mast, and finally the whole thing. As they 
recede from each other, the other ship appears to sink back into the water.  This is true 
whether they approach  along a north-south line, or east-west, or any other direction. An 
Astute Greek might have concluded from this that the earth is spherical.

On the other hand, it might a belief based on culture. The Greeks thought the 
sphere was the most perfect three-demsional shape. So it might have been natural to think 
Mother Earth had this shape. So imagining the Earth to be spherical could either have been 
the result of rational thought based on observations, or an egocentric, aesthetic or religious 
belief. 

That the sun’s rays are nearly parallel at any given location on earth can be 
seen from the near sharpness of shadows. The angular size of the sun is about 1/2 degree. If it 
were a point in the sky, the rays would be almost precisely parallel. That all the sun’s rays 
landing at different locations on earth (e.g. the top and bottom arrows above) are nearly 
parallel to each other is due to the fact that the sun is far from earth compared with the size of 
the earth. 

Thus, as the diagram shows, different locations on earth receive the sun’s rays 
at different angles to the surface, or to the surface normal, which is “the vertical”, a line 
outward from the center of the earth. What Eratosthenes realized is that by measuring how 
this angle changes with location, he could determine the size of the earth.  

ERATOSTHENES
BELIEVED EARTH TO BE SPHERICAL

SUN’S RAYS NEARLY PARALLEL

THEREFORE SUN’S RAYS ARRIVE 
AT DIFFERENT ANGLES 

AT DIFFERENT LOCATIONS



Eratosthenes knew that at noon on June 21(the summer solstice) 
the sun was directly overhead at Syene, Egypt. (Present-day Aswan, where 
there is now a large dam in the Nile) This means that Syene is on the tropic of 
cancer. This undoubtedly was common knowledge, having been noticed by the 
fact that a deep well will reflect the sun’s rays directly back in your face at 
noon on that date. Or that a vertical stick in the ground will cast no shadow.

SIZE OF EARTH

• ON JUNE 21, AT NOON, THE 
SUN IS DIRECTLY OVERHEAD 
AT SYENE, EGYPT.



Eratosthenes lived in Alexandria, 5000 stades North of Syene
near the mouth of the Nile on the Mediterranean. At noon on June 21 (the 
summer solstice) he measured the angle of the sun’s rays there. He did so 
using a Greek sundial, shown above. As constructed then, sundials were 
hemispheres with a gnomon (pointer) over the center. A plumbob suspended 
from the end of the gnomon indicates the vertical direction and angular 
positions are marked from that origin. 

At noon on the summer solstice, Eratosthenes found the sun’s 
shadow was 1/50th of a circle from the vertical. Using toda’ys angular measure, 
this would be 360/50 = 7.20. 

SIZE  OF  EARTH
• ERATOSTHENES MEASURED THE 

ANGLE OF THE SUN AT ALEXANDRIA, 
5000 STADES NORTH, ON THE SAME 
DATE, FINDING IT WAS 1/50 OF A FULL 
CIRCLE FROM OVERHEAD.



THE PROBLEM HAS BEEN 
REDUCED TO GEOMETRY

SYENE

ALEXANDRIA

The problem has now been reduced to one of geometry. In the above 
diagram the sun’s rays incident on Syene are headed straight for the center of the 
Earth. The sun’s rays at Alexandria are parallel to those at Syene: here Eratosthenes 
is assuming that the distance to the sun is large compared with the distance between 
Syene and Alexandria. The shadow angle Eratosthenes measured at Alexandria is the 
angle between the sun’s rays and the vertical black line shown. But this is equal to 
the angle at the center of the earth between radial lines drawn from Syene and 
Alexandria. Geometry once again allows us to measure an angle at a location that is 
impossible to get to. We still cannot go anywhere near the center of the earth. If the 
earth were the size of an apple, the deepest we have gone (by drilling) is not far 
enough to have penetrated the skin of the apple.

Since the angle at the center of the earth is 1/50th of a circle, the 
circumference of the earth must be 50 times the distance from Syene to Alexandria. 
This means the earth’s circumference must be 50*5000 = 250,000 stades. 

The Greeks did not have standardized units of measure at this time. 
The units of length were directly associated with body parts. The foot was a basic 
unit of length. Archaeologists have found that depending on the city, the  foot could 
be 0.30, 0.32, or 0.33 meters in size. For longer distances, the Olympic measure, the 
stadium, was used, which was supposed to be 600 feet. If we use today’s definition 
of a foot, 250,000 stades equals 28,400 miles. The accepted value of the earth’s 
circumference today is about 25,000 miles so Eratosthenes’ value is about right. 

The method he used is completely sound and is a good example of 
Greek analytic methods in astronomy. Geometry was the only mathematics they 
knew (recall that they did not even have a useful way of doing arithmetic), and 
continuing the Pythagorean idea that mathematics underlies natural phenomena, they 
used it wherever they could. 



ALEXANDRIA

SYENE

ALEXANDRIA MUST BE 1/50 OF THE 
EARTH’S CIRCUMFERENCE NORTH 

OF SYENE, SO THE 
CIRCUMFERENCE MUST BE 250,000 
STADES, OR ABOUT 28,000 MILES



SHADOWS: DISTANCE TO 
THE MOON

SHADOW OF THE EARTH IN SPACE
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ARISTAUCHUS 250 BCE

Aristarchus of Samos was one of the most revolutionary 
thinkers of ancient Greeck science. Not only did he devise methods of finding 
the distances to the Moon and Sun, but he also proposed that the sun was at the 
center of our solar system, with the earth rotating and orbiting around it. This 
heliocentric model did not gain acceptance among other astronomers, and for 
centuries to come, the geocentricpicture remained the standard model of the 
solar system.

Aristarchus’ method of finding the distance to the moon begins 
with careful observations of a lunar eclipse, in which the Moon passes through 
the shadow of the earth. If the sun were a point source of light, then the earth’s 
shadow would be a cylinder extending to infinity through space. Instead it is a 
sphere of finite size, having an angular diameter of about ½ degree as seen 
from earth. We can imagine building up the shadow of earth by assembling 
many point sources until we have a sphere or disk the size of the sun. Each of 
these sources, i.e. each part of the sun, creates a cylindrical shadow with a 
slightly different direction. These shadows overlap each other for only a finite 
distance in space. The shadow of a round object has the shape of a cone, with 
length equal to 108 times the diameter of its base. 



UMBRA AND PENUMBRA

The dark part of the shadow that we have been discussing, is 
called the umbra. Surrounding it is a region of partial shadow called the 
penumbra. This is what gives shadows of trees and houses a fuzzy edge. The 
farther an object is from its shadow, the fuzzier the shadow becomes, 
eventually disappearing altogether. 

The diagram above shows a sketch of the sun and earth with the 
umbra of earth extending behind it while becoming smaller and smaller and 
eventually disappearing. This conical shape of the umbra of a round object is 
easy to observe with a quarter or other round object.

During an eclipse of the moon, we hardly notice the penumbra. 
When the moon nearly disappears, it is in the umbra of the earth. 

Notice that the vertex angle of the cone of the umbra equals the
angular diameter of the sun as seen from earth. This will be important shortly.



DURING A LUNAR ECLIPSE, 
THE MOON PASSES THROUGH 
THE SHADOW OF THE EARTH

Aristarchus began timing lunar eclipses. He measured the time 
required for the moon to enter the umbra, and the time for the leading edge of 
the moon to cross the umbra. Doing this accurately required making many 
eclipse observations because the moon rarely goes directly across the umbra 
passing through its center. It is more likely to be off center, or just graze the 
umbra for a partial eclipse. Other astronomers repeated these measurements 
once Aristarchus had shown why it was interesting to do so. They eventually 
determined that the moon requires 2.5 times as long to cross the umbra as it 
takes to enter it. 



OBSERVATIONS

THE SHADOW IS 2 1/2 TIMES THE 
MOON’S DIAMETER

ANGULAR SIZE OF MOON = 
ANGULAR SIZE OF SUN

A second observation was also important, namely that the 
moon’s angular diameter is the same as that of the sun. Modern values for the 
angular diameters of the moon and sun are 0.51 and 0.53 degrees, respectively, 
so the Greek conclusions were quite accurate.  

These two observations are all Aristarchus needed to evaluate 
the distance to the moon. To do so he relied once again on geometry.



THE PROBLEM HAS BEEN 
REDUCED TO GEOMETRY
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Here is a sketch of the earth is space with its umbra behind it.
The moon is about to enter the umbra from above, going into eclipse. We label 
the earth’s diameter D and the moon’s diameter d. We know from the Greek 
timing observations that the line BE equals 2.5d. We also know that the vertex 
angle at C is equal to the angular diameter of the sun, and that the vertex angle 
at A has the same value. Therefore triangle CEB is similar to triangle AdB. 

This means that the ratios of corresponding sides of these 
triangles are equal. Therefore CB/BA = BE/d = 2.5. Now AC is the length of 
the umbral cone, which we know to be 108 times D, the diameter of earth. But 
AC is also equal to the sum of AB and BC, and we know that BC is 2.5 times 
AB. So AC, the length of the cone, is 3.5 times AB, the distance to the moon.

Solving for AB we find it is equal to 31 earth diameters. This is 
remarkably close to the modern value of 30.3 earth diameters.

What Aristarchus has done here is use the earth’s diameter as a 
yardstick to measure the distance to the moon. The idea itself is an important 
step in Greek astronomy. When he wanted to measure an astronomical 
distance, likely to be very large, he did not try to use feet or stades, which are 
appropriate for earth-bound distances. He used the earth itself. 

Note also that Aristarchus did this before Eratosthenes had 
measured the size of the earth. So his yardstick had not been calibrated at the 
time he proposed using it.  
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ARISTARCHUS: DISTANCE 
TO THE SUN

Emboldened by his success with the moon, Aristarchus pushed 
on. Now that he knows the distance to the moon, could he use this as a 
yardstick to measure another, larger astronomical distance? The obvious 
challenge was the distance to the sun. He did devise a method. The geometry is 
easier, but the measurements themselves much more demanding. 

Here is the idea: When the moon is exactly half full (so the 
shadow line on the moon is straight), the angle between the earth and the sun 
as seen from the moon, must be 900. The diagram above depicts this situation. 
Now the  trick is to measure the angle alpha, the angle between the sun and 
moon as seen from earth. This requires, of course, being able to see both the 
sun and moon at the same time. When the sky is clear, this is usually possible 
for a couple of hours when the moon is half full. 

The measurement is difficult because alpha is so close to 900. 
Aristarchus thought alpha was 87 degrees; it is actually 89 degrees 52 minutes. 
In any case, if we can measure alpha, we can find the distance to the sun in 
terms of the distance to the moon using similar triangles. We would draw a 
triangle on a flat surface with the measured value of alpha, and measure the 
ratio of the two sides corresponding to the earth-sun distance, and the earth-
moon distance. 



D a t e A s t r o n o m e r M o o n  D i s t a n c e S u n  D i s t a n c e

- 2 6 0 A r i s t a r c h u s 9 . 5 1 8 0

- 1 3 0 H i p p a r c h u s 3 3 . 7 1 2 4 5  

- 7 0 P o s i d o n i u s 2 6 . 2 6 5 4 5

+ 1 5 0 P t o l e m y 2 9 . 5 6 0 5

M o d e r n  V a l u e s 3 0 . 3 1 1 , 7 4 5

S U M M A R Y :  G R E E K  
D I S T A N C E S  I N  E A R T H  

D I A M E T E R S

Above is a table summarizing numerical results for various Greek
astronomers using Aristarchus’ methods for the moon and sun.

Triangulation was used for the moon until recent times. Now we 
measure distances to the planets by bouncing radar pulses off them. The distance to the 
moon can be measured even more accurately because of a set of corner reflectors left 
there by US astronauts. Laser pulses returned by the reflectors give a very precise 
value. A project is underway to measure this distance to within 1mm as a test of general 
relativity.

The above table raises an interesting question: In studying contributions 
made in the past by scientists working on a quantitative subject, how important is 
accuracy? Here we see that Aristarchus concluded that the distance to the sun is less 
than modern values by a factor of 65. It may seem that when someone making a 
quantitative measurement is off by this much, their result is of no value whatsoever. 
This is not so, however, and here we see a good example of why.

Before Aristarchus, there was only guesswork about the distance to the 
sun. Being wrong by a factor of 65 is better than having no idea at all. And, more 
important, Aristarchus provided a method. Later astronomers could and did improve on 
it. A new method can be more important than an accurate measurement. In addition, the 
astronomers making this measurement knew their values were very uncertain because 
alpha is so close to 90 degrees. 

Sometimes, however, accuracy can be very important. We will 
encounter a very good example of this when we discuss Tycho Brahe’s measurements 
of planetary positions and how Kepler interpreted them.

There is an unstated assumption in all of the above work: It is assumed 
that light travels the same way in space near the moon or sun, as it does here on earth. 
For example, the knowledge that the length of the umbral cone of a circular object is 
108 times its diameter came from measurements made of disks and spheres here on 
earth. How do we know light travels the same way in the space behind earth?

This is the first use of the idea of Universality. That the laws of physics 
are the same elsewhere in the Universe as here on earth. Isaac Newton is usually given 
credit for this idea. Unfortunately none of Aristarchus’ own writings have survived, so 
we do not know whether he was aware that he was making this assumption.



ARISTARCHUS’ 
HELIOCENTRIC MODEL

SUN IS AT CENTER

EARTH ROTATES DAILY PRODUCING
THE APPARENT DAILY MOTIONS

OF THE CELESTIAL OBJECTS

EARTH ORBITS SUN ONCE PER YEAR
PRODUCING THE PROGRESSION

THROUGH THE ZODIAC

Aristarchus was not only an accomplished astronomer, he was 
also a daring thinker. Ancient astronomers had believed earth to be stationary 
and at the center of the universe since the first recorded speculations on this 
topic. This was established conventional wisdom. This location for earth had a 
kind of religious appeal as well, since putting earth at the center of things put 
humans there too, which was a kind of proof of our importance in the scheme 
of things.

Aristarchus however proposed that the sun was at the center, 
with the earth rotating and orbiting around it. How did he come upon this idea? 
One possibility is the following. He had measured the distance to the moon in 
terms of earth’s diameter. Then he measured the distance to the sun using the 
distance to the moon as a yardstick. Could he use the distance to the sun as a 
measuring stick for something else? 

The distance to the starry vault is the obvious next step. He 
realized this distance could only be measured if the earth moved. If it did, then 
the angular positions of the stars would change as earth moves about the sun. 
This is called stellar parallax. This change in angular positions of objects 
because the observer moved is something we experience every day. As you 
walk along a sidewalk, the angular positions of trees, houses, buildings, etc 
change, not because they moved, but because you did.

So Aristarchus realized that an observation of stellar parallax 
would both confirm the heliocentric model and determine the distance to a 
star. Attempts to observe the parallax failed, however.  



1. Lack of stellar parallax.

2. Required overthrowing a long-established conventional wisdom.

3. The earth feelslike it is stationary. If we evaluate the earth’s orbital speed
required by the heliocentric model, even using Aristarchus’ small value for
the distance to the sun, we find v = 2πR/365  = 25,000 miles/day. This was 
an unheard of speed, and we don’ t notice it. Galileo was the first person to
correctly address this question and to explain it.

4. Religious and cultural reasons. Accepting this radical change in world view 
would require changing the jobs of many of the gods (e.g. Zeus, who carried
the Sun across the sky). It also displaces humans from the center of the                   

universe.  

SUMMARY

Aristarchus’ heliocentric model had little impact on other Greek 
astronomers, or later people as well. Why was such a good idea ignored? What 
were their reasons for rejecting it?

We have just seen that they failed to observe a stellar parallax. 
Archimedes concluded that either the heliocentric model is wrong, or the 
universe is much larger than had been thought. This was the correct 
conclusion. There was no compelling argument either way, and under those 
circumstances, the old, accepted, comfortable idea usually wins out.

The Greeks could not understand how, if the earth moves 
around the sun at enormous speeds, we do not notice this motion. They 
imagined that falling objects would be deflected to the side, and that clouds 
would be blown away. 

Aristarchus did not have a smoking gun, and without it, his idea 
died on the vine.


