SLOWING DOWN THE
MOTION

Galileo’s hypothesis for falling bodies is thatylgain equal
amounts of speed in equal intervals of time as fakyThis is not the only
possibility he considered. He suggests others i8,TiNIt rejects them with
careful arguments. For example, what about sayiagd falling body gains
equal amounts of speed when falling through egumaiLents of height?
(According to this hypothesis, it would take a weigqual times to fall 4
feet as to fall 8 feet. This is not what is obsdrye

Galileo is asking a new kind of question: How dtesspeed
change as a body falls? His problem was, thingsdalfast to be measured
repeatedly as they fall using the methods availabtbe time. So he wanted
to slow the motion down without changing its ch&eadf he were to drop a
stone in water, it would quickly reach terminal speind continue at that
same speed for the remainder of the fall.

Galileo used the pendulum sketched above to coavhimoself
that he could slow the motion down without introhgcfriction. When a
pendulum swings from one side to the other, itsrigenearly the same
height. (A small amount of friction slows it dowiigtly so it does not rise
back all the way). The height to which it risesie&germined by the speed of
its motion at the bottom of the trajectory.




SLOWING DOWN THE
MOTION

He then built a modified pendulum as shown abovped is
inserted below the suspension point, so as thehwsigings past it, the peg
suddenly shortens the length of the pendulum cgusio swing up
abruptly. What he found is that it still rises betsame height as before, and
does so again back on the other side. Galileo drthat this shows that a
falling pendulum reaches the same speed at therbait its motion
regardless of how steep the descent was.

This is a remarkable insight. Let’s state this ndearly.
Starting with an ordinary pendulum without the piégve raise it up to a
certain height, it will rise to the same heighttba other side, ignoring a
small amount of friction. Then it swings back te triginal side, again
nearly to the original height. As it moves throupgha bottom of its motion,
its speed determines how high it will go. This bandetermined by
releasing it from different heights and noticingttthe higher the release,
the faster it goes at the bottom.

Now put the peg in. It still rises just as highba$ore on the
side opposite the release, even though it rosesteeper trajectory. And as
it returns to the original side, it again riseghe original height. But on the
way up once it gets past the peg, it is the fulgté pendulum we started
with. So it must have been going just as fastabibitom as if the peg had
not been there.

Galileo then applied these ideas to a ball roldogvn one
ramp and then up another.




BALL ON TWO RAMPS

Galileo thought of his pendulum as being a sucoessi
ramps of different slopes, and what he had jusivehis that the slope
doesn’t matter in determining how far up the otside the ball will go, or
how fast the ball will go at the bottom.

Of course there is a difference now between angpliiall and a
sliding (or swinging) ball, but Galileo’s intuiticield him this should not
affect the basic argument, and he was right. Heangenius at choosing
what difficulties to ignore.

So let’s apply the pendulum conclusions to two opg
ramps as shown. We expect then, that for very Sm@whps and a round
hard ball, that it will roll up the other side teetsame height from which it
was released. And, it will have the same speeldeabdttom no matter
which side it was released from.

Now imagine the right ramp being made steeper taepsr. If
it is steep enough we can think of the ball as Birfglling. He concludes
that for a ball rolling down a ramp, the speedatous heights is the same
as if it had simply fallen vertically from the dfiag point to that height. He
further concludes that the ramp has allowed hisido down the motion of
free fall, allowing him to make measurements of it.




GALILEO’'S ACCELERATION
EXPERIMENT

From Two New Sciences p 178:

A piece of wooden moulding or scantling about 1BRitsu
long(!), half a cubit wide, and three finglereadths thick was taken;
on its edge was cut a channel a little more thanfimger in breadth;
having made this groove very straight, smooth, @lghed, and
having lined it with parchment, also as smooth poltshed as
possible, we rolled along it a hard, smooth, arrg veund bronze
ball. Having placed this board in a sloping positity raising one end
above the other we rolled the ball along the chianoing the time
required to make the descent. We then rolled thebly onequarter
of the length of the channel, and found it pregisgiehalf of the
former. Next we tried other distances, and alwaysfl the spaces
traversed were to each other as the squares tfrtes.

Above is Galileo’s description of his inclined pé&an
experiment so carefully justified by the experinsene have
described that he knew he was studying diluteduhadiiy
accelerated motion” (i.e. freely falling bodies).

Galileo measured the time of descent using a water
clock. We will do the same. This is about as adeuas human
reaction times allow. The amount of water that 8pdetermined
by its weight, is a measure of the elapsed timdilgdastates in
TNS that a given experiment could be repeated niamgs without
observing time differences greater than a tenthmillse beat.

Carry out experiment measuring times for the lmall t
roll 1/9, 4/9, 9/9 of the length of the board. Froar result for
uniform acceleration we expect

x = 1/2at so ¥/2 = kt
As a simple test, plot'® vs t to see if it is a straight line.

MODERN VERSION: SHOW gliders on level and
tilted air track.




GALILEO HI TECH

Here is a modern version of Galileo’s experimeat tie would
have loved to use. It not only takes the data fastd more precisely but does
all the data analysis and presents the results graphically

We have an Al inclined track with a cart with véoyv friction
wheels. The wheels require bearings that wereveladble until last few
decades. The cart will roll down the track andisition recorded by a sonar
device. This is much like the police radar gun te#s the traffic cop your
car’s speed, only it uses sound waves insteaddad v@aves. You will not
hear the sound because the frequency is well abevieuman audio range.
The sound waves bounce off the cart and are refldzack to the box at the
top of the track that acts as both source andvecerhe position of the cart
Is determined by the time delay between transmmsaia reception.

Since the speed of sound is about 334 m/s, a risyndistance
of 3m for the sound pulse causes a time delay @fita®.01s. The sensor can
do this with considerable accuracy and measuresates position several
times per second.

SHOW cart rolling from rest down track. SHOW gragh
position vs time, then speed vs time, then acceberas time.




DIRECT MEASUREMENMT
OF g

Since we have this sonar position sensor, why Ibetith an
inclined plane at all? Let’s just drop a ball andasure its position as it
falls. This, after all, is what Galileo wanted to, ébut could not. He
substituted ingenuity for technology, arguing ashaee seen that an
inclined plane gave him a true picture of “natwyratcelerated motion”,
or the acceleration due to gravity.

SHOW dropped ball measured by sonar position sensor
SHOW graph of position, speed, acceleration vs.tldse fitting
programs to find g for each. g = 9.8 Aisquite accurate over most of the
earth. We will use g = 10 n#/for most problems for simplicity.

SHOW video of dropped ball as a visual, qualitative
presentation of falling body motion.

SHOW reaction time measurement for hand motionguain
dropped meter stick. 5 cm drop corresponds to @ehation time. 10 cm
to 0.14s, 20 cm to 0.2s.

SHOW dropped timed steel ball. A descent of 1.23m
corresponds to a time of 0.50s using g = 9.8.m/s




MARBLE IN SHOE BOX

Suppose we put a marble in a shoe box, and gk
and forth. The marble will roll from one end to tiker. We
assume when it hits the end of the box it stickkieut bouncing.
Since the marble is a ball rolling down an inclingane, we know
how to describe its motion. The displacement ineesa
quadratically with time until it abruptly stopstae other end. Then
when the box is tilted the other way, it rolls back

What does the speed v look like for this motion?eWh
the marble is stuck at the ends, the speed islgleam. As it rolls,
what does the speed graph look like?

Now what about the marble’s acceleration? As isrol
how does its acceleration behave with time? Gasleowved it is a
constant. Then the marble hits the other end obtixeand its
speed suddenly stops. The acceleration must be ¢arg negative
when this collision takes place. Acceleration s thte at which
speed is changing, and in a very short time afipesed goes to
zero.




NON-ZERO INITIAL SPEED

vy + at

Vo

vV =y, + at X = Vayt= Y2y + W)t

X =Ya(\ + vy + at)t = yt + 1/2at

Suppose we are observing a motion in which thelnit
speed is not zero as we have assumed so far. &ompdx we could
throw a rock upwards in the air. How do we hantls

We describe this graphically above. An initial speg
exists, and acceleration begins at t = 0. Thisquesins that the
speed increases (or decreases) starting fromtie value.

How can we evaluate the distance traveled? The
distance is always given by the average speed tingesme. For
uniform acceleration, the average speed is jusatleeage between
the initial and final values. Inserting our expieador the final
speed, we have the result shown above.

A simple interpretation of this result is that thigect
moves as though its initial speed continued uncedramd in
addition the acceleration occurred. It is as thaotnghinitial speed
and the acceleration are unaware of each other.




EXAMPLE: THROW ROCK UP

Choose upward to be positive displacement and speed
(This choice is arbitrary)

Then v =y -gt
Let v, = 5m/s and g = 10n¥s
When does the rock get to the top of its motion?
v=0=5-10t so 5=10t and t=0.5s
How high did it go?
y = Vot —1/2g€ = 5(0.5)-5(0.5f = 2.5—-1.25 = 1.25m

Let’'s look at a simple example illustrating these
results. This is something we have all done. Thaawck in the air.
To describe motion we must choose a coordinatesyghink
Ptolemy and Copernicus). Of course our coordingtees is fixed
on the surface of Earth, but we must still chooketWer up or
down displacements will be labeled positive. Thiarbitrary. The
initial speed and g are opposed so one has todsive.

When does the rock reach the top of its motion? How
do we define the top of the motion. Try tossingrypencil in the
air in front of you. What happens at the top?dpstand turns
around. When you walk down the hall and turn arooechuse you
forgot something, you must stop in the process.

So to find t at the top, set v = 0 and solve fdra.find
how high it went, we just use our expression (wihrect signs)
for displacement including an initial speed.

You could now find how long it stayed in the air by
finding the time for it to fall from rest from a ight of 1.25 m.




QUESTION

For the rock just thrown, what was its acceleration
at the very top of its motion?

. +10 m/g
. +5m/3
. 0m/g

. -5m/g
. -10 m/g

Here is a short quiz. Think about this for a minoite
two and then we will vote.

The question posed here is must the acceleratio® ha
any special value when the speed is zero? The answe.
Acceleration is the rate of change of speed and doedepend on
whatever value the speed has at the moment. Thegjaektion is
whether the speed is changing or not, and of sehat rate?

In this case, the acceleration due to gravity actdl
times for all unconstrained bodies. They alwaysbxrate
downward until they hit the ground.
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SAME QUESTION USING
INCLINED PLANE

Cart on track with motion sensor.

Start it initially moving upwards. In this case thwvi

the sensor at the top of the track, downwardshweill
positive in the graphs shown.

SHOW cart on inclined track, starting it with an
upward push from near the end of the track. Disglag t. It first
decreases, then increases. This is like measurengdsition of the
rock thrown up from up in a tree.

SHOW speed vs time. Note it goes through zeroeat th
top of the motion as we said for the rock.

SHOW acceleration vs time. It remains constant
throughout the motion except at the ends when dtinees enter.
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DROP ROCK FROM TOP OF
BUILDING

Here we extend our earlier equations by
adding an initial displacement

y =Yo— 1/2g¢

Let y, = 50m.
y = 50— 5t?
When does it hit? Answer: wheny =0

0=50-5t so52=50 and 4=10 so t=3.2s

Instead of adding an initial speed, let's add aimain
displacement. We drop a rock from the top of admg 50m high.
We could use a coordinate system with y = 0 atdpeof the
building, but instead let’'s choose ground levebasszero of
height. Then clearly we just adgtp our equation for
displacement.

How long until the rock hits ground? This occursamwh
y = 0. Solving for t we find 3.2s.
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