DESCRIBING MOTION

speed = distance traveled/time

= (% =X/t~ ty)
= Ax/At

Our goal is to learn what causes motion. We wiltlie by
breaking the problem into two parts. The first sgefp develop a way to
describe motion. After we have that in place weé ask what causes the
motion we have learned how to describe. Some sfrttaly seem very simple
— but remember, the Greeks, who did so much so diellnot get this right.
Galileo took the first steps in the right directidimen Newton went farther
using the same approach, and finally, Einstein gltbus how to do this
right.

Let’s imagine we want to describe the motion of etihing that
Is very small that is moving in one direction onfyxen all we need to do to
specify its location is give its position x alorwat direction. If we are
dealing with something larger, say a car on a rtregh) we can put a small
marker on it like a spot of paint, and specifyldsation.

The idea of speed has been understood since ationest If
you had asked a traveler how fast he was going 2686 ago, he might
have said “I have gone 30 miles in the last twosda$peed is the rate at
which position is changing. The traveler's answigeg his average speed,
since part of the time he was presumably sleeping.

If someone asks how far it is from Charlottesviie/ Vashington
DC, the answer usually given is two hours. We umse to specify distance
when the speed is understood.




TYPICAL SPEEDS

Motion v(mph) (WS) v/c
Light 669,600,000 300,000,000 1
Earth around sun 66,600 29,600 410
Moon around Earth 2300 1000 3*80
Jet fighter 2200 980 3*19
Sound in air 750 334 10
Commercial airliner 600 267 0
Cheetah 62 28 10
Falcon diving 82 37 10
Olympic 100m dash 22 10 3*10
Flying bee 12 5 10
Walking ant 0.03 0.01 3*10
Swimming sperm 0.0001 0.000045 160
Cock roach

Speeds are specified in units of distance divided b
time. Many different combinations of units are usedhake the
order of magnitude of the speed convenient. Foal&ing ant,
cm/s would be convenient.Car speeds use mph orrkiiiie
standard scientific notation is m/s.

Later we will learn that the speed of light is @Gl
speed in our universe. For future reference, shalamare these
speeds divided by the speed of light. All of thgsmmal” speeds
are clearly very small compared with c, the spddbt.

Light travels about one foot in a nanosecond. S0llit
be convenient when we talk about speeds approachiméave our
clocks read in nanoseconds, and measure distam&est |

Sound in air travels about 1 mile in 5 secondsht.ig
takes only about 5 microseconds to travel the sdistance. So
when you are out walking and a thunderstorm appesco/ou can
count off the seconds between seeing the flasHightning stroke,
and hearing the thunder clap. Each 5 seconds nos&nsile of
distance between you and the lightning bolt.




EXAMPLE

Speed of moon around Earth

v = distance/time =1R/T

R = 240,000 mi
T =27.3 days

v = (6.28*2.4*16)/(27.3*24) = 2300 mph

Here is a simple example. The Moon moves in a
nearly circular orbit about Earth. Its distance pw&a240,000 mi,
so this is the radius of the circle. The periodhef orbit, measured
relative to the fixed stars, is 27.3 days. To getdpeed in mph, we
need to convert days to hours.




DISTANCE-TIME GRAPH

It is often useful to show the motion of an object
graphically. A graph of distance versus time shbo the
object’s position changes with time. The graphsvalshow the
flights of two different bees. One bee moves 118 &. The other
flew6 min 3 s.

Let’s ask how far the first bee flew in the firscend.
Drawing a vertical line up to the graph at the-seeond point, we
see that it went 5 m. So its speed in the firsbsdavas 5 m/s. And
at the end of 2 s it had gone 10 m. So it is dleairthe speed of the
bee remained constant during its flight.

The distances we have just measured divided by the
corresponding time intervals, are just equal toslbpe of the
graph. And for these straight line graphs, theeslgonstant, so
the speed of the bees remained constant duringfligéis.

So the slope of the distantiene graph is equal to the
speed.




(WS)

SPEEDTIME GRAPH

Area = 15m

A graph of speed versus time is very simple when th
speed is constant. Why do we bother to make sgechph at all? A
graph of something versus time is normally enlightg only if the
something is changing with time.

We can learn something interesting from this graph
however. The area under the graph is just thearaaectangle
whose height is the speed, 5m/s times the widgh, This area is
equal to 15 m which is the distance the bee went.

So the area under a speéde graph is the distance
traveled, at least when the speed is constant.




RELATIVE SPEED

Speeds are always measured with respect to am arfigi
coordinates, or a reference frame. Sometimes d¢hatence frame might
itself be moving with respect to something else. 3&& an example of this
in the Ptolemaic model of the universéhe reference frame for that model
is the Earth which is itself moving with respecthe Sun.

How do we take a moving reference frame into actdiihe
Galilean method is illustrated here. A wagon maalesig the ground with
a speed,, ., the speed of the wagon with respect to the Earthan
walks on the wagon with a speegl,. the speed of the man with respect to
the wagon. What is the man’s speed with respetttadarth? It is simply
the sum of the above two speeds.

The man could of course be walking backwards atbeg
wagon, in which case,,, would be negative. Labeling the speeds this way
provides a mnemonic to help remember the resulttamelp keep signs
straight. The moving reference frame labeled byn\whis case, appears
twice on the right side of the equation, sandwicbetitveen M and E
which appear on the left side. The first and lasissripts on the left side
are the same as the first and last on the right.




EXAMPLE: FLEA ON DOG ON
TRAIN

A train travels east with a speeg-w 20 km/hr
A dog walks down the aisle eastward with spegd=2 km/hr
A flea walks rumpward on the dog’s back with spegg=v0.01 km/hr

What is the speed of the flea with respect to the Earth?

Veg = Vep + Vpr + Ve =-0.01 + 2 + 20 = 21.99 km/hr

Here is an example with three moving things. The
train moves eastward with speed 20 km/hr. A docksvdbwn the
aisle forward in one of the cars with a speed kimzhr. A flea
walks down his back (to the west) with a speed.01 &m/hr.

The equation for the speed of the flea with resfect
the Earth must include three terms. The subsdaptthe two
intermediate reference frames, the dog and the, tagipear in
succession. The subscripts for the flea and thé eppear first and
last.

Question: What is,? This is the speed of the earth
with respect to the train. Since the train is gagiagt at 20 km/hr
with respect to the earth, then the earth is guiagt at 20 km/hr
with respect to the train. We have all experieritesl WWhen you
are in a car going north, and you look down atgaieement, you
see it going south. Interchanging the two substpanges the
sign of the velocity.




CHANGING SPEEDS

Speeds of moving objects seldom remain constant for
very long. Here is a graph showing our bee visiflagiers in a
garden. It flies 10 min 5 s during which timestgeed is 2 m/s.
Then it lands on a flower and stays there forBusing this time
its speed is zero, so the graph is horizontal fer|%s position did
not change during this time so the graph has depesThen it
takes off and flies on for 5 more seconds at agpé& m/s.

We could define an average speed over this 15 s
interval. It traveled 20 m in 15 s, so its averageed is 1.33 m/s.
Note that the bee’s speed during this time wasmegeal to 1.33
m/s even though that is its average speed.




IMPORTANT EXAMPLE:
UNIFORM ACCELERATION

t

a = constant acceleration = v/t (Fy/si/hr)

Acceleration is the rate of change of speed, arfthso
units of m/8 or mi/he, etc. Here we see the speed increasing
uniformly so a = constant. This is an importantregée for two
reasons. First, we will encounter familiar situaidor which the
acceleration really is constant.

In addition, in many circumstances we can
approximate the acceleration as being constant iéwes not. For
example, a hammer hitting a nail, or a basebalhliahg a ball. In
these cases the acceleration is not constanthéwillision is so
brief that all that counts is the average accatarand its duration.
The details of how the acceleration increased hed tlecreased
with time do not matter.




HOW FAR DOES IT GO?

t
Distance equals area under speed graph regardless of its shap

Area = x = Y»(base)(height) = %4(t)(at) = 1Rat

For the case of constant acceleration, how far tees
moving object go in a specified time. We have dbahnthe area
under the speed vs time graph equals the distasreefgr constant
speed, i.e.when the graph has the shape of a gbet&ut we can
approximate any shape graph by a series of naeotamgles. If
we center the rectangles on the linearly rising for constant
acceleration we make no errors in the total aredah& distance
gone is always equal to the area under the spewch@graph.

For constant acceleration what we are evaluatitigeis
area of a triangle, which we know is %2 the basedgithe height.
This is just x = Y4(t)(at) = 1/2at
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DISTANCE-TIME GRAPH FOR
UNIFORM ACCELERATION

We have seen that the distatttee graph for constant
speed is a straight line. For constant accelerat®have just
shown that the distance gone increases as theesqiidre time.
This relation, when shown graphically, has the shafpa parabola.

Note that this means the distance traveled statts o
very slowly, but as time passes, x increases muievare rapidly
with t. This is because the speed is increasirealiy with t as we
have seen.
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EXAMPLE: SUPERTANKER

Accelerates from 0 to 40 mph in 1 hour.
so a = 40 mi/kr

Then x = %2(40)(1) = 20 miles

If it continues for 2 hours,
then x = %2(40)(4) = 80 miles

Supertankers accelerate and decelerate very slowly.

This just means that a is small. In this exampted® mi/he. As
the calculation shows, it goes 20 miles duringfits¢ hour while
getting up to speed.

If it could continue accelerating another hour duid
have gone 80 miles. The travel time has doubled sarhas the
speed, so it goes four times as far in two houia agse hour.

This is not likely however, since then it would be
going 80 mph-way above a supertanker’s top speed.
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HORIZONTAL & VERTICAL
MOTION

Avristotle

Horizontal motion: v = kF where F = applied force

Vertical motion: v = kW where W = body’s weight

So now that we know something about how to desernibgon, let
us ask what kinds of motion do we observe in n&téuestotle wrote that for
horizontal motion, objects, such as an oxcart, movke direction of an applied
force with a speed that is proportional to thatérThis does indeed describe
the motions of many objects in everyday life. A daes not move along a
horizontal road unless the engine pushes it aMfiten you stop pushing a
book across a desk, it stops moving.

What Aristotle did not realize was that frictioraps a role in the
motion of most everyday objects. Not only is thepoing the cart forward, but
friction is pulling it back.

Aristotle’s rule for vertical motion is very simi#&o that for
horizontal motion. The speed of a falling bodyisgortional to its weight. If
we recognize the body’s weight as the applied fdtwen this is the same as the
rule for horizontal motion.

Aristotle’s rule works for objects falling throughe air from great
height. They accelerate at first until they reac¢areninal velocity. The next
slide shows some examples.




TERMINAL SPEEDS

Object” Speed (m/s) Speed (mph)

Feather 0.4 0.9
Snowflake 1 2.2
BB 9 20
Mouse 13 29
Sky diver 60 134
Cannonball 250 560

As the above objects fall through the air they
accelerate. As their speed increases, so doesathesisistance.
Eventually the upwards force of air resistance bexpequal to the
weight of the object, and there is no net forcehmnfalling body,
and it's speed becomes constant.

The sky diver’s terminal speed of 60 m/s (134 mph)
for a spreaekagle position. If the diver tucks his body into a
spherical shape, his terminal speed will roughlylde.

So the terminal speed of a falling body dependgson
weight and shape. A feather falls slowly partlydnese it is light,
but also because it is spread out and intercegteat deal of air.




HORIZONTAL & VERTICAL
MOTION

Galileo

Horizontal motion: v = constant provided F = 0

Vertical motion: acceleration = constant
(neglecting air friction)

In his bookTwo New Sciences Galileo begins by ignoring friction.
This creates a completely different situation theas described by Aristotle. He
wrote: “Imagine any particle projected along a hontal plane without friction;
then we know that this particle will move alongstsame plane with a motion
which is uniform and perpetual, provided the plaas no limits.”

Galileo worked with rolling round metal balls onrfaices. He must
have observed that as the surface is made smaottdrarder, the ball, once
given a push, will roll farther and farther. In tdmait of perfection, it will roll
forever.

This idea is often called Galileo’s principle oéntia. That if an
object is initially at rest, it will remain so, amfdnoving, it will continue unless
acted upon by a force. This is also called Newtdirss law of motion.

Galileo’s rule for vertical motion is that the ataration of falling
bodies is constant, regardless of their weight.

In TNS, the three characters discuss falling bodrep 62:

SALVIATI: I greatly doubt that Aristotle ever testdy experiment whether it be
true that two stones, one weighing ten times ashnasdhe other, if allowed to fall
from a height of, say, 100 cubits, would so diffespeed that when the heavier
had reached the ground, the other would only haenf 10 cubits.
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HORIZONTAL & VERTICAL
MOTION

Galileo

Horizontal motion: v = constant provided F =0

Vertical motion: acceleration = constant
(neglecting air friction)

Simplicio’s response is not to think of doing thegeriment himself, but to
examine more carefully the words of the great Attho

SIMPLICIO: His language would seem to indicate thatad tried the
experiment because he says: We see the heavier..wdrdesee shows he
had made the experiment.

SAGREDO: But I, Simplicio, who have made the teat) assure you that
a cannon ball weighing one or two hundred poundsyen more, will not
reach the ground by as much as a span ahead da$lkethall weighing
only half a pound, provided both are dropped froneight of 200 cubits.

Here we see the beginnings of modern science. idé¢he
idea that the opinions about the physical worlddwered authorities stand
or fall by experimental test.

Having established that falling bodies fall at Haene rate, he
then goes on to assert his hypothesis that thegdspincrease uniformly
with time. In other words, they fall with constatceleration.
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SLOWING DOWN THE
MOTION

Galileo’s hypothesis for falling bodies is thatytgain equal
amounts of speed in equal intervals of time as fakyThis is not the only
possibility he considered. He suggests others i8,TiNIt rejects them with
careful arguments. For example, what about sayiagd falling body gains
equal amounts of speed when falling through egumaiLants of height?
(According to this hypothesis, it would take a wdigqual times to fall 4
feet as to fall 8 feet. This is not what is obsdrye

Galileo is asking a new kind of question: How dtesspeed
change as a body falls? His problem was, thingsdalfast to be measured
repeatedly as they fall using the methods availabtbe time. So he wanted
to slow the motion down without changing its chéeadf he were to drop a
stone in water, it would quickly reach terminal spend continue at that
same speed for the remainder of the fall.

Galileo used the pendulum sketched above to coavhimoself
that he could slow the motion down without introahgcfriction. When a
pendulum swings from one side to the other, itsrigenearly the same
height. (A small amount of friction slows it dowiightly so it does not rise
back all the way). The height to which it risesi&termined by the speed of
its motion at the bottom of the trajectory.
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SLOWING DOWN THE
MOTION

He then built a modified pendulum as shown abovpeg is
inserted below the suspension point, so as thehwswings past it, the peg
suddenly shortens the length of the pendulum cgusto swing up

abruptly. What he found is that it still rises h®tsame height as before, and

does so again back on the other side. Galileo drtha this shows that a
falling pendulum reaches the same speed at therbait its motion
regardless of how steep the descent was.

This is a remarkable insight. Let’s state this ndearly.
Starting with an ordinary pendulum without the pégyve raise it up to a
certain height, it will rise to the same heighttba other side, ignoring a
small amount of friction. Then it swings back te tbriginal side, again
nearly to the original height. As it moves throubgk bottom of its motion,
its speed determines how high it will go. This bandetermined by
releasing it from different heights and noticingttthe higher the release,
the faster it goes at the bottom.

Now put the peg in. It still rises just as highb&$ore on the
side opposite the release, even though it rosesteeper trajectory. And as
it returns to the original side, it again riseghe original height. But on the
way up once it gets past the pegq, it is the fulgte pendulum we started
with. So it must have been going just as fastabibitom as if the peg had
not been there.

Galileo then applied these ideas to a ball roldogvn one
ramp and then up another.
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BALL ON TWO RAMPS

Galileo thought of his pendulum as being a sucoessi
ramps of different slopes, and what he had jusivehis that the slope
doesn’t matter in determining how far up the otside the ball will go, or
how fast the ball will go at the bottom.

Of course there is a difference now between angpliiall and a
sliding (or swinging) ball, but Galileo’s intuiticield him this should not
affect the basic argument, and he was right. Heangenius at choosing
what difficulties to ignore.

So let’s apply the pendulum conclusions to two opg
ramps as shown. We expect then, that for very Sm@whps and a round
hard ball, that it will roll up the other side teetsame height from which it
was released. And, it will have the same speeldeabdttom no matter
which side it was released from.

Now imagine the right ramp being made steeper taepsr. If
it is steep enough we can think of the ball as Birfglling. He concludes
that for a ball rolling down a ramp, the speedatious heights is the same
as if it had simply fallen vertically from the dfiag point to that height. He
further concludes that the ramp has allowed hisidw down the motion of
free fall, allowing him to make measurements of it.
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EXAMPLE: MARBLE IN
SHOEBOX

Suppose we put a marble in a shoe box, and gk
and forth. The marble will roll from one end to thiher. We
assume when it hits the end of the box it stickkieut bouncing.
Since the marble is a ball rolling down an inclingane, we know
how to describe its motion. The displacement ineesa
quadratically with time until it abruptly stopstae other end. Then
when the box is tilted the other way, it rolls back

What does the speed v look like for this motion?eWh
the marble is stuck at the ends, the speed islglearm. As it rolls,
what does the speed graph look like?

Now what about the marble’s acceleration? As isrol
how does its acceleration behave with time? Galleowved it is a
constant. Then the marble hits the other end obthxeand its
speed suddenly stops. The acceleration must be ¢arg) negative
when this collision takes place. Acceleration s thte at which
speed is changing, and in a very short time afipesed goes to
zero.
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