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DESCRIBING MOTION

0 x

speed = distance traveled/time
= (x2 – x1)/(t2 – t1)
= ∆x/∆t

Our goal is to learn what causes motion. We will do this by 
breaking the problem into two parts. The first step is to develop a way to 
describe motion. After we have that in place we will ask what causes the 
motion we have learned how to describe. Some of this may seem very simple 
– but remember, the Greeks, who did so much so well, did not get this right. 
Galileo took the first steps in the right direction, then Newton went farther 
using the same approach, and finally, Einstein showed us how to do this 
right.

Let’s imagine we want to describe the motion of something that 
is very small that is moving in one direction only. Then all we need to do to 
specify its location is give its position x along that direction. If we are 
dealing with something larger, say a car on a road, then we can put a small 
marker on it like a spot of paint, and specify its location. 

The idea of speed has been understood since ancient times. If 
you had asked a traveler how fast he was going 2000 years ago, he might 
have said “I have gone 30 miles in the last two days.” Speed is the rate at 
which position is changing. The traveler’s answer gives his average speed, 
since part of the time he was presumably sleeping.

If someone asks how far it is from Charlottesville to Washington
DC, the answer usually given is two hours. We use time to specify distance 
when the speed is understood. 
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TYPICAL SPEEDS
Motion v(mph) v(m/s) v/c
Light 669,600,000 300,000,000 1
Earth around sun 66,600 29,600 10-4

Moon around Earth 2300 1000 3*10-6

Jet fighter 2200 980 3*10-6

Sound in air 750 334 10-6

Commercial airliner 600 267 10-6

Cheetah 62 28 10-7

Falcon diving 82 37 10-7

Olympic 100m dash 22 10 3*10-8

Flying bee 12 5 10-8

Walking ant 0.03 0.01 3*10-11

Swimming sperm 0.0001 0.000045 10-13

Cock roach

Speeds are specified in units of distance divided by 
time. Many different combinations of units are used to make the 
order of magnitude of the speed convenient. For a walking ant, 
cm/s would be convenient.Car speeds use mph or km/hr. The 
standard scientific notation is m/s.  

Later we will learn that the speed of light is a special 
speed in our universe. For future reference, shown also are these 
speeds divided by the speed of light. All of these “normal” speeds 
are clearly very small compared with c, the speed of light.

Light travels about one foot in a nanosecond. So it will 
be convenient when we talk about speeds approaching c to have our 
clocks read in nanoseconds, and measure distances in feet.

Sound in air travels about 1 mile in 5 seconds. Light 
takes only about 5 microseconds to travel the same distance. So 
when you are out walking and a thunderstorm approaches, you can 
count off the seconds between seeing the flash of a lightning stroke, 
and hearing the thunder clap. Each 5 seconds means one mile of 
distance between you and the lightning bolt.
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EXAMPLE

Speed of moon around Earth

v = distance/time = 2πR/T

R = 240,000 mi
T = 27.3 days

v = (6.28*2.4*105)/(27.3*24) = 2300 mph

Here is a simple example. The Moon moves in a 
nearly circular orbit about Earth. Its distance away is 240,000 mi, 
so this is the radius of the circle. The period of the orbit, measured 
relative to the fixed stars, is 27.3 days. To get the speed in mph, we 
need to convert days to hours. 
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DISTANCE-TIME GRAPH
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It is often useful to show the motion of an object 
graphically. A graph of distance versus time shows how the 
object’s position changes with time. The graphs above show the 
flights of two different bees. One bee moves 15 m in 3 s. The other 
flew 6 m in 3 s. 

Let’s ask how far the first bee flew in the first second. 
Drawing a vertical line up to the graph at the one-second point, we 
see that it went 5 m. So its speed in the first second was 5 m/s. And 
at the end of 2 s it had gone 10 m. So it is clear that the speed of the 
bee remained constant during its flight. 

The distances we have just measured divided by the 
corresponding time intervals, are just equal to the slope of the
graph. And for these straight line graphs, the slope is constant, so 
the speed of the bees remained constant during their flights.  

So the slope of the distance-time graph is equal to the 
speed. 
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SPEED-TIME GRAPH
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A graph of speed versus time is very simple when the 
speed is constant. Why do we bother to make such a graph at all? A 
graph of something versus time is normally enlightening only if the 
something is changing with time. 

We can learn something interesting from this graph 
however. The area under the graph is just the area of a rectangle 
whose height is the speed, 5m/s times the width, 3 s. This area is 
equal to 15 m which is the distance the bee went. 

So the area under a speed-time graph is the distance 
traveled, at least when the speed is constant.
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RELATIVE SPEED

vWE

vMW

vME = vMW + vWE

Speeds are always measured with respect to an origin of 
coordinates, or a reference frame. Sometimes that reference frame might 
itself be moving with respect to something else. We saw an example of this 
in the Ptolemaic model of the universe – the reference frame for that model 
is the Earth which is itself moving with respect to the Sun.

How do we take a moving reference frame into account? The 
Galilean method is illustrated here. A wagon moves along the ground with 
a speed vWE, the speed of the wagon with respect to the Earth. A man 
walks on the wagon with a speed vMW, the speed of the man with respect to 
the wagon. What is the man’s speed with respect to the Earth? It is simply 
the sum of the above two speeds. 

The man could of course be walking backwards along the 
wagon, in which case vMW would be negative. Labeling the speeds this way 
provides a mnemonic to help remember the result, and to help keep signs 
straight. The moving reference frame labeled by W in this case, appears 
twice on the right side of the equation, sandwiched between M and E 
which appear on the left side. The first and last subscripts on the left side 
are the same as the first and last on the right.  
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EXAMPLE: FLEA ON DOG ON 
TRAIN

A train travels east with a speed vTE = 20 km/hr

A dog walks down the aisle eastward with speed vDT = 2 km/hr

A flea walks rumpward on the dog’s back with speed vFD = 0.01 km/hr

What is the speed of the flea with respect to the Earth?

vFE = vFD + vDT + vTE = -0.01 + 2 + 20 = 21.99 km/hr

Here is an example with three moving things. The 
train moves eastward with speed 20 km/hr. A dog walks down the 
aisle forward in one of the cars with a speed of 2 km/hr. A flea
walks down his back (to the west) with a speed of 0.01 km/hr.

The equation for the speed of the flea with respect to 
the Earth must include three terms. The subscripts for the two 
intermediate reference frames, the dog and the train, appear in 
succession. The subscripts for the flea and the earth appear first and 
last.

Question: What is vET? This is the speed of the earth 
with respect to the train. Since the train is going east at 20 km/hr 
with respect to the earth, then the earth is going west at 20 km/hr 
with respect to the train. We have all experienced this. When you 
are in a car going north, and you look down at the pavement, you
see it going south.  Interchanging the two subscripts changes the 
sign of the velocity. 



8

CHANGING SPEEDS
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Speeds of moving objects seldom remain constant for 
very long. Here is a graph showing our bee visiting flowers in a
garden. It flies 10 m in 5 s during which time its speed is 2 m/s. 
Then it lands on a flower and stays there for 5 s. During this time 
its speed is zero, so the graph is horizontal for 5 s. Its position did 
not change during this time so the graph has zero slope. Then it
takes off and flies on for 5 more seconds at a speed of 2 m/s.

We could define an average speed over this 15 s 
interval. It traveled 20 m in 15 s, so its average speed is 1.33 m/s. 
Note that the bee’s speed during this time was never equal to 1.33 
m/s even though that is its average speed.
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IMPORTANT EXAMPLE: 
UNIFORM ACCELERATION

v

t

v =
 at

a = constant acceleration = v/t (m/s2, mi/hr2)

Acceleration is the rate of change of speed, and so has 
units of m/s2 or mi/hr2, etc. Here we see the speed increasing 
uniformly so a = constant. This is an important example for two 
reasons. First, we will encounter familiar situations for which the 
acceleration really is constant. 

In addition, in many circumstances we can 
approximate the acceleration as being constant even if it is not. For 
example, a hammer hitting a nail, or a baseball bat hitting a ball. In 
these cases the acceleration is not constant, but the collision is so 
brief that all that counts is the average acceleration and its duration. 
The details of how the acceleration increased and then decreased
with time do not matter. 
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HOW FAR DOES IT GO?

v

t

Area = x = ½(base)(height) = ½(t)(at) = 1/2at2

at

Distance equals area under speed graph regardless of its shape

For the case of constant acceleration, how far does the 
moving object go in a specified time. We have seen that the area
under the speed vs time graph equals the distance gone for constant 
speed, i.e.when the graph has the shape of a rectangle. But we can 
approximate any shape graph by a series of narrow rectangles. If
we center the rectangles on the linearly rising line for constant 
acceleration we make no errors in the total area. So the distance 
gone is always equal to the area under the speed vs time graph.

For constant acceleration what we are evaluating is the 
area of a triangle, which we know is ½ the base times the height. 
This is just x = ½(t)(at) = 1/2at2.
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DISTANCE-TIME GRAPH FOR 
UNIFORM ACCELERATION

x

t

We have seen that the distance-time graph for constant 
speed is a straight line. For constant acceleration we have just
shown that the distance gone increases as the square of the time. 
This relation, when shown graphically, has the shape of a parabola. 

Note that this means the distance traveled starts out 
very slowly, but as time passes, x increases more and more rapidly 
with t. This is because the speed is increasing linearly with t as we 
have seen. 
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EXAMPLE: SUPERTANKER

Accelerates from 0 to 40 mph in 1 hour.
so a = 40 mi/hr2

Then x = ½(40)(1) = 20 miles

If it continues for 2 hours,
then x = ½(40)(4) = 80 miles

Supertankers accelerate and decelerate very slowly. 
This just means that a is small. In this example a = 40 mi/hr2. As 
the calculation shows, it goes 20 miles during the first hour while 
getting up to speed.

If it could continue accelerating another hour it would 
have gone 80 miles. The travel time has doubled, and so has the 
speed, so it goes four times as far in two hours as in one hour.

This is not likely however, since then it would be 
going 80 mph – way above a supertanker’s top speed. 
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HORIZONTAL & VERTICAL 
MOTION

Aristotle

Horizontal motion: v = kF where F = applied force

Vertical motion: v = kW where W = body’s weight

So now that we know something about how to describe motion, let 
us ask what kinds of motion do we observe in nature? Aristotle wrote that for 
horizontal motion, objects, such as an oxcart, move in the direction of an applied 
force with a speed that is proportional to that force. This does indeed describe 
the motions of many objects in everyday life. A car does not move along a 
horizontal road unless the engine pushes it along. When you stop pushing a 
book across a desk, it stops moving. 

What Aristotle did not realize was that friction plays a role in the 
motion of most everyday objects. Not only is the ox pulling the cart forward, but 
friction is pulling it back. 

Aristotle’s rule for vertical motion is very similar to that for
horizontal motion. The speed of a falling body is proportional to its weight. If 
we recognize the body’s weight as the applied force, then this is the same as the 
rule for horizontal  motion. 

Aristotle’s rule works for objects falling through the air from great 
height. They accelerate at first until they reach a terminal velocity. The next 
slide shows some examples.
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TERMINAL SPEEDS

Object ` Speed (m/s) Speed (mph)

Feather 0.4 0.9
Snowflake 1 2.2
BB 9 20
Mouse 13 29
Sky diver 60 134
Cannonball 250 560

As the above objects fall through the air they 
accelerate. As their speed increases, so does their air resistance. 
Eventually the upwards force of air resistance becomes equal to the 
weight of the object, and there is no net force on the falling body, 
and it’s speed becomes constant. 

The sky diver’s terminal speed of 60 m/s (134 mph) is 
for a spread-eagle position. If the diver tucks his body into a 
spherical shape, his terminal speed will roughly double.

So the terminal speed of a falling body depends on its 
weight and shape. A feather falls slowly partly because it is light, 
but also because it is spread out and intercepts a great deal of air.
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HORIZONTAL & VERTICAL 
MOTION

Galileo

Horizontal motion: v = constant provided F = 0

Vertical motion: acceleration = constant
(neglecting air friction)

In his book Two New Sciences Galileo begins by ignoring friction. 
This creates a completely different situation than was described by Aristotle. He 
wrote: “Imagine any particle projected along a horizontal plane without friction; 
then we know that this particle will move along this same plane with a motion 
which is uniform and perpetual, provided the plane has no limits.”

Galileo worked with rolling round metal balls on surfaces. He must 
have observed that as the surface is made smoother and harder, the ball, once 
given a push, will roll farther and farther. In the limit of perfection, it will roll 
forever. 

This idea is often called Galileo’s principle of inertia. That if an 
object is initially at rest, it will remain so, and if moving, it will continue unless 
acted upon by a force. This is also called Newton’s first law of motion.

Galileo’s rule for vertical motion is that the acceleration of falling 
bodies is constant, regardless of their weight.

In TNS, the three characters discuss falling bodies on p 62:

SALVIATI: I greatly doubt that Aristotle ever tested by experiment whether it be 
true that two stones, one weighing ten times as much as the other, if allowed to fall 
from a height of, say, 100 cubits, would so differ in speed that when the heavier 
had reached the ground, the other would only have fallen 10 cubits.
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HORIZONTAL & VERTICAL 
MOTION

Galileo

Horizontal motion: v = constant provided F = 0

Vertical motion: acceleration = constant
(neglecting air friction)

Simplicio’s response is not to think of doing the experiment himself, but to
examine more carefully the words of the great Authority.

SIMPLICIO: His language would seem to indicate that he had tried the 
experiment because he says: We see the heavier…; The word see shows he 
had made the experiment.

SAGREDO: But I, Simplicio, who have made the test, can assure you that 
a cannon ball weighing one or two hundred pounds, or even more, will not 
reach the ground by as much as a span ahead of a musket ball weighing 
only half a pound, provided both are dropped from a height of 200 cubits. 

Here we see the beginnings of modern science. Here is the 
idea that the opinions about the physical world by revered authorities stand 
or fall by experimental test. 

Having established that falling bodies fall at the same rate, he
then goes on to assert his hypothesis that their speeds increase uniformly 
with time. In other words, they fall with constant acceleration.



17

SLOWING DOWN THE 
MOTION

Galileo’s hypothesis for falling bodies is that they gain equal 
amounts of speed in equal intervals of time as they fall. This is not the only 
possibility he considered. He suggests others in TNS, but rejects them with 
careful arguments. For example, what about saying that a falling body gains 
equal amounts of speed when falling through equal amounts of height? 
(According to this hypothesis, it would take a weight equal times to fall 4 
feet as to fall 8 feet. This is not what is observed.) 

Galileo is asking a new kind of question: How does the speed 
change as a body falls? His problem was, things fall too fast to be measured 
repeatedly as they fall using the methods available at the time. So he wanted 
to slow the motion down without changing its character. If he were to drop a 
stone in water, it would quickly reach terminal speed and continue at that 
same speed for the remainder of the fall. 

Galileo used the pendulum sketched above to convince himself 
that he could slow the motion down without introducing friction. When a 
pendulum swings from one side to the other, it rises to nearly the same 
height. (A small amount of friction slows it down slightly so it does not rise 
back all the way). The height to which it rises is determined by the speed of 
its motion at the bottom of the trajectory. 
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SLOWING DOWN THE 
MOTION

He then built a modified pendulum as shown above. A peg is 
inserted below the suspension point, so as the weight swings past it, the peg 
suddenly shortens the length of the pendulum causing it to swing up 
abruptly. What he found is that it still rises to the same height as before, and 
does so again back on the other side. Galileo argued that this shows that a 
falling pendulum reaches the same speed at the bottom of its motion 
regardless of how steep the descent was. 

This is a remarkable insight. Let’s state this more clearly. 
Starting with an ordinary pendulum without the peg, if we raise it up to a 
certain height, it will rise to the same height on the other side, ignoring a 
small amount of friction. Then it swings back to the original side, again 
nearly to the original height. As it moves through the bottom of its motion, 
its speed determines how high it will go. This can be determined by 
releasing it from different heights and noticing that the higher the release, 
the faster it goes at the bottom.

Now put the peg in. It still rises just as high as before on the
side opposite the release, even though it rose on a steeper trajectory. And as 
it returns to the original side, it again rises to the original height. But on the 
way up once it gets past the peg, it is the full length pendulum we started 
with. So it must have been going just as fast at the bottom as if the peg had 
not been there. 

Galileo then applied these ideas to a ball rolling down one 
ramp and then up another.
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BALL ON TWO RAMPS

Galileo thought of his pendulum as being a succession of 
ramps of different slopes, and what he had just shown is that the slope 
doesn’t matter in determining how far up the other side the ball will go, or 
how fast the ball will go at the bottom.

Of course there is a difference now between a rolling ball and a
sliding (or swinging) ball, but Galileo’s intuition told him this should not 
affect the basic argument, and he was right. He was a genius at choosing 
what difficulties to ignore. 

So let’s apply the pendulum conclusions to two opposing 
ramps as shown. We expect then, that for very smooth ramps and a round 
hard ball, that it will roll up the other side to the same height from which it 
was released. And, it will have the same speed at the bottom no matter 
which side it was released from. 

Now imagine the right ramp being made steeper and steeper. If 
it is steep enough we can think of the ball as simply falling. He concludes 
that for a ball rolling down a ramp, the speed at various heights is the same 
as if it had simply fallen vertically from the starting point to that height. He 
further concludes that the ramp has allowed him to slow down the motion of 
free fall, allowing him to make measurements of it. 
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Suppose we put a marble in a shoe box, and tilt it back 
and forth. The marble will roll from one end to the other. We 
assume when it hits the end of the box it sticks without bouncing. 
Since the marble is a ball rolling down an inclined plane, we know 
how to describe its motion. The displacement increases 
quadratically with time until it abruptly stops at the other end. Then 
when the box is tilted the other way, it rolls back.

What does the speed v look like for this motion? When 
the marble is stuck at the ends, the speed is clearly zero. As it rolls, 
what does the speed graph look like?

Now what about the marble’s acceleration? As it rolls, 
how does its acceleration behave with time? Galileo showed it is a 
constant. Then the marble hits the other end of the box and its 
speed suddenly stops. The acceleration must be large and negative 
when this collision takes place. Acceleration is the rate at which 
speed is changing, and in a very short time all its speed goes to 
zero.
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EXAMPLE: MARBLE IN 
SHOEBOX


