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GALILEO: SCALING

What changes when we alter the physical sizes
of objects other than the physical sizes themselves?

Why are there no giants?

Physical size is important for most of the things we deal with in 
life. Buildings, animals, cars, trees, … For example the movie King Kong is 
intriguing first and foremost because a 60 foot tall gorilla does not exist. Why 
not? A six inch tall gorilla could exist (small monkeys, baby gorillas.) Other 
animals that size do, so there is nothing impossible about a miniature gorilla. 
(Probably not as a box office hit, however). Why are there no giants? 

Galileo was the first person to think about such questions carefully. 
He developed a way of thinking about the sizes of objects in a systematic way 
that is called scaling. Today scaling is used widely in comparative anatomy and 
engineering. For example if you are building an airplane you might first want to 
build a scale model and test it in a wind tunnel. You then need to know how to 
scale up the test results to find the lift and drag forces that will exist for the full 
size aircraft. 

Let’s begin by thinking about the physical size of simple objects. 
As we scale up or down the dimensions of a sphere for example, how do its 
surface area and volume change? 

SHOW weight comparison of one inch and two inch diameter steel 
spheres. For a sphere, volume = 4/3πr3, so doubling r multiplies the volume and 
hence weight by 8.  
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VOLUME OF ONE MILLION 
GRAINS OF RICE

1 m3

0.3 m3

0.1 m3

0.03 m3

0.01 m3

Here we see some containers with rice in them. The 
largest has one million grains of rice in it. Make a rough estimate of 
what you think is the volume of one million grains of rice.

Answer: 0.02 m3. The volume of an object is the 
product of its length, width, and depth. In this case all are a fraction 
of a meter, so the volume is a small fraction of a cubic meter.
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SCALING A CUBE

L

kL

A1 = 6L2

V1 = L3
A = 6k2L2 = k2A1

V = k3L3 = k3V1

Note: L ~ V1/3 ~ A1/2 and  A ~ V2/3

Here we have a cube with side of length L. If we multiply the length 
by k we create a cube of larger or smaller size. What happens to its surface area and 
volume when we do this? 

The area is multiplied by k2 and the volume by k3. In fact this is true 
for any three dimensional object. If we multiply all the dimensions of an 
automobile by k, its surface area or cross sectional area is multiplied by k2 and its 
volume by k3. So far this is just geometry. Galileo took this thinking one step 
further.

Suppose you see a chandelier hanging from the ceiling of a small room 
and you like its design. You want to make a larger one to hang in a larger room. 
Let’s say you decide to double each of its dimensions. Then since you multiplied its 
volume by 8, you also multiplied its weight by 8. Now consider the rope that 
supports the chandelier. Its strength is proportional to its cross sectional area which 
is a measure of how many fibers it is made of. If you double each of the dimensions 
of the rope, you have multiplied its cross sectional area by 4. So it can support four 
times the weight of the original rope, but it needs to hold 8 times as much. If the 
original rope was close to its limit, then the scaled rope will not support the scaled 
chandelier. 

Galileo realized that simple geometric scaling does not work when the 
mechanical strength of structures is taken into account. 

Note also that L scales (is proportional to ) the cube root of  V or the 
square root of A. And A scales as V raised to the 2/3 power. These results are valid 
for any three-dimensional object.  
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KING KONG
Multiply the dimensions of a gorilla by 10. Then its weight
is multiplied by 1000, and bone cross sectional area by 100.

The King Kong of the movie is simply a geometrically scaled up 
gorilla. It has the same proportions as a normal gorilla, but is about 10 times as 
tall, thick, and wide. This has the effect of multiplying its weight by 1000 and its 
bone cross sectional areas by 100.

If normal gorillas have bones just strong enough to carry their bodies 
in normal locomotion, then King Kong is in big trouble. The intrinsic strength of 
the material bone is made from in animals of all sizes (Calcium apatite embedded 
in a matrix of collagen) is about the same. The strength of a bone is proportional to 
its cross sectional area.  Compressive failure occurs for a stress of about 2*108

N/m2 (29,000 lbs/in2). Most animals produce stresses nearly this large in vigorous 
activity. This means that a scaled up gorilla King Kong’s size would not be able to 
move around at all. Evolution could not produce such a creature.

Galileo realized that larger animals need thicker bones compared with 
smaller animals. Above is a sketch taken from Two New Sciences illustrating this 
idea. The larger bone has three times the length of the smaller bone. By what 
factor should its diameter be scaled to be strong enough to support the animal’s 
weight? Answer: It’s cross sectional area must be larger by 27 so its diameter must 
be scaled by (27)1/2 or a little over 5. Three is not enough. In the sketch Galileo 
exaggerated, making the diameter larger by about 7. 

. 
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EXPECTED BONE SHAPE 
VARIATION WITH ANIMAL 

MASS
If bone cross sections are determined by animal weight, 
then we expect cross sectional area A ~ m where m is 
the total animal mass.

Bone length should be proportional to m1/3

So skeletal mass should be proportional to 
(m1.0)*(m0.33) = m1.33

How do we expect bone shape to change with animal 
size? Since weight can be readily measured, we will use animal 
mass as a measure of size. Skeletal mass can also be readily 
measured so we use this as a measure of the size of the bones.

Then if the cross sectional area of bones is determined 
by the need to support the animal’s weight, we expect the area to be 
proportional to m, the animal’s mass.

Animal volume, and hence mass, scale as the cube of 
the linear dimension of the animal, and hence as the cube of bone 
length. So bone length should be proportional to m0.33. Therefore 
the skeletal volume, and hence its mass should be proportional to 
m1.33.

This is our expectation based on the assumption that 
bone cross section is determined primarily by animal weight. How
does skeletal mass actually vary with animal mass? How can we go
about finding out?
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GENERAL SCALING 
EQUATION

y = axb

y = quantity being studied
x = quantity y varies with
a = coefficient
b = exponent

log(y)

log(x)

Graph on a logarithmic scale
is a straight line with slope
equal to b

We have seen that when we scale an object geometrically, 
keeping its shape the same, often one quantity varies as a power of another 
quantity, e.g. volume varies as the cube of the length scale. A general 
equation that can include all the examples we have discussed can be 
written as above. y is the quantity we want to study, such as the skeletal 
mass of animals. x is the quantity we think y varies with, such as animal 
size or total mass. a is a coefficient and b an exponent.  

When y = skeletal mass, and x = total mass, our model 
predicts that b = 1.33. 

To find out whether animals are actually built like our model 
says, what we need to do is collect data on many animals with a wide 
range of sizes. Then when y is plotted against x on a logarithmic scale, the 
above equation forms a straight line with a slope of b. 

The equation above is general in the sense that it can be used 
to find out whether any quantity y scales with any other quantity x. They 
do not need to be geometric quantities as our skeletal mass example shows, 
and the coefficient and exponent can have any values that the data require. 
They are not limited to geometric values.
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ACTUAL BONE SHAPE 
VARIATION WITH ANIMAL 

MASS

Above is shown a graph of measured skeletal masses in kg 
plotted versus total animal mass in kg. Both scales are logarithmic. The data 
points do fall on a straight line, the slope of which is 1.09. This is less than 
our expected slope of 1.33. What does this mean? Simply put, the skeletal 
mass varies more slowly with animal size than our model predicted.

If the bones of a mouse have the right thickness to support its 
weight, the bones of an elephant must be too thin. Conversely, if the bones 
of an elephant have the right thickness to support it, then the bones of a 
mouse must be too thick.

Our conclusion is that weight is not the only factor affecting 
animal skeletal shape. Animals do not just stand around. They also walk, 
run, jump, etc. Studies show that animals of all sizes stress their bones to 
near the breaking point in normal, vigorous activity. We know this is true 
for humans as well: Athletes  are frequently at risk for breaking bones.

Small and large animals therefore behave differently. Mice and 
squirrels jump and run; Elephants can gallop, but usually walk, and do not 
jump.   

The coefficient in the above equation tells us that a 1 kg animal 
has a skeletal mass of 0.061 kg (6.2 kg for a 70 kg human).
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RESTING METABOLIC 
RATES OF MAMMALS

Maintains body temperature

Heat loss proportional to surface area ~ M2/3

So we expect Metabolic Rate ~ M2/3

An intriguing problem in comparative anatomy that 
has remained controversial for more than a century has to do with 
the resting metabolic rate of mammals. When an animal is not 
exercising, its metabolism is needed mainly to maintain body 
temperature. Assuming the outside temperature is below body 
temperature, which is true over most of the earth, then metabolic 
energy is being generated to replace heat lost to the surrounding air.

When study of this question began during the early 
1800s, it was assumed that the body surface scaled as body size to 
the 2/3 power. That is, it was assumed that animals have the same 
shape, and are scaled versions of one another. We know that this is 
not so now, but at the time it was a reasonable place to start. 

This leads directly to the expectation that the resting 
metabolism of mammals should scale as M2/3.
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RESTING METABOLIC 
RATES VS MAMMAL SIZE

Once again we have developed a simple model for 
how a measurable quantity should scale with animal size, and we 
can test the model as we have done before. Data has been collected 
on the metabolic rates of mammals from mice to elephants and is 
shown on the graph above using logarithmic scales. Indeed the 
points do fall close to a straight line so the scaling idea itself is 
supported. 

The straight line that fits the data, however has a slope 
of 0.75 instead of the expected 0.67. This discrepancy is well 
outside the uncertainties evident by the scatter of the measured
points. Many proposals have been made during the past several 
decades to explain the slope of this graph. Evidently 0.67  is not the 
slope of the graph, but what is the argument for 0.75?
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RESTING METABOLIC RATE 
FOR HUMANS

Metabolic Rate (Watts) = 4M0.75

For a 70 kg person, Rate = 70 Watts

The regression line from the previous slide for mammals can be 
described by Rate (Watts) = 4M0.75 with mass in kg. For a 70 kg person, this 
corresponds to a resting metabolic rate of 70 Watts. So when you are sitting in 
your room reading at a 100 W light, you are heating the room less than is your 
light bulb.



11

SPECIES IDEA
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Each Species
b = 0.67

All Species
b = 0.75

One proposal that somewhat clarifies the situation is 
this. We know that all animals are not geometrically scaled 
versions of one another. Within a given species however, this is
much closer to being the case. So if we separate the metabolic data 
among different species, what do we find?

The result is that each species can be represented by a 
line with a slope of 0.67, which is what we expect for animals that 
are simply scaled. Upon going from one species to another, the 
various species lines group along the line with a slope of 0.75.
What changes between species is the coefficient a in the general
scaling equation. Large animals have larger values of a but within 
each species, the scaling value of b. 

This is interesting, but it still does not explain the 
value of 0.75 for all mammals. 

Question: We started by assuming that animal surface 
area scales as M0.67. Is this accurate?   
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BODY SURFACE AREA VS 
MASS

Above is a test of the surface area scaling of mammals. The 
points fall close to a straight line with a slope of 0.67. So in spite of 
differences in appearance of different species of animals, our body areas 
scale in the same uniform way with body weight. 

So in spite of the naiveté of the early assumption that all 
animals are geometric scale models of one another, we find that surface 
areas do scale that way even though different animals look different.  This 
result by itself is a curiosity at least, and perhaps an indication that we are 
missing something important. At this point we do not understand why 
surface areas scale so simply.

In addition of course this leaves us without an explanation for 
the metabolic exponent of 0.75. This a puzzle yet to be explained.

An equation describing the above straight line is A = aM0.67

with a = 10 when A is in cm2 and M in grams. 

The heavy dots in the upper right part of the 
graph above are for beech trees(!).
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SKIN AREA FOR HUMANS

Area = 0.1M0.67

with area in m2,
M in kg.

For M = 70 kg, Area = 1.76 m2

From the regression line on the previous slide, the surface area
of animals can be described by the equation given above. This means (in case 
you were curious) that the skin area of a 70 kg person is about 1.76 square 
meters.

Someone weighing more or less can evaluate their skin areas 
from the above equation.
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ENERGY COST OF RUNNING

Work done by leg muscles per step = 
(Force)*(Contraction distance) ~ (M2/3)*(M 1/3) ~ M

Step length ~ M1/3 so steps per km ~ M-1/3

Work per km ~ (M)*(M-1/3) ~ M0.67

So work per kg per km ~ (M0.67)*(M -1) ~ M-.33

The energy cost of locomotion of animals is a 
fascinating one with some surprising results. What can we say 
about it in a general way?

The work done by any force equals the magnitude of 
the force times the distance through which it acts. In the case of leg 
muscles this is the muscle force times the distance of contraction. 
This is the work done per step by leg muscles. Since muscle force 
is proportional to its cross section, and contraction distance 
proportional to its length, the work done per step scales as muscle 
volume or mass. Muscle mass is about 40% of body mass for 
nearly all animals. 

Distance covered per step is proportional to leg length 
which scales as body mass to the one-third power. So the number 
of steps per km scales as M-1/3. 

So based on these general arguments, we expect that 
the energy cost per kg per km will scale as M-1/3.  
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COST OF RUNNING VS BODY 
WEIGHT

Here we see the energy cost of running expressed as ml of 
Oxygen metabolized per kg of animal mass per km plotted vs body weight in 
kg. The data fall close to a straight line with a slope of – 0.33 as expected.

The negative slope shows that a larger animal can more 
efficiently move a kg of its mass over a distance of a kilometer than can a 
smaller animal. This difference is due entirely to the fact that a smaller animal 
must take more steps to go a km.

The cluster of points for humans lies somewhat above the line, 
probably because we are bipedal runners and all the other animals shown have 
four legs. 

The above line is described by the equation Cost (liters of O2per 
kg per km) = 0.8M-0.33

The cost for birds to fly can be evaluated similarly with the result 
Cost (liters of O2per kg per km) = 0.26M-.23.

Surprisingly, birds transport themselves more efficiently than 
running animals (using the same units of cost). This is mainly due to the fact 
that birds fly so much faster than animals of a similar size run.  
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COST OF RUNNING FOR 
HUMANS

Energy cost = 1 Cal/kgkm
= 70 Cal/km for 70 kg

On the previous slide the points for humans was above the line, 
with the cost of running being about twice that for quadrupeds(!). Changing 
the energy units to Calories (ie nutritional calories) we find the energy cost as 
shown above. 

This is remarkably efficient transportation. This result is 
independent of speed, provided, of course that the person is running.
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HOW HIGH CAN YOU JUMP?
Energy needed to jump height h = mgh ~ M

Energy available from muscles also ~ M

So height h is independent of body size!

Jumper mass height

Flea 0.5 mg 20 cm
Click Beetle 40 mg 30 cm
Locust 3 g 59 cm
Man 70 kg 60 cm

How high can different animals jump? Think of examples you are 
familiar with: dogs, cats, a horse, yourself. Here I am referring to a standing 
high jump. In a running jump, part of the kinetic energy of running is converted 
into height. 

In fact there is not much difference in the heights these animals can 
jump. Why is that? It is simply a matter of scaling. We have not talked about 
energy yet, but we will see that to raise your center of gravity a height h requires 
an energy of mgh. This clearly scales as body weight M. 

Where does this energy come from? From leg muscles, and we 
have already seen that the work they can do also scales as M. So when we set 
these two equal to each other, body mass M cancels out and h is independent of 
animal size.

Well, not quite. Very small creatures are limited by air friction. As 
body mass increases, air friction becomes less important and we see that locusts 
and people both jump to about the same height.

At the large end of the scale, elephants don’t jump well because
they are pushing the strength limits of their bones and muscles just to walk 
around. Mid-range size animals do, however, all jump nearly  to the same 
height.
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COULD TYRANNOSAURUS 
REX RUN?

We started with King Kong, so let’s finish with another famous 
monster. Tyrannosaurus rex was a bipedal carnivore, and we have seen in 
the movie Jurassic Park, that it could chase down jeeps at 40 mph. But 
could this 6000 kg monster really run? This is meant in the track and field 
sense of having both feet off the ground at times. 

The chicken is a 3 kg bipedal carnivore that can run, and very 
well. So let’s put them side by side to see what we think.

From the picture above we can’t immediately tell whether we 
are seeing a chicken scaled geometrically up until its mass is 6000 kg, or a 
Tyrannosaur scaled down until its mass is 3 kg. I think we can see from the 
discussions today that a 6000 kg chicken could not run. 

Estimates have been made that for a Tyrannosaur to run it 
would need to devote about 85% of its body weight to leg muscle. The 
chicken devotes about 15% of its body weight to leg muscle, and the 
average for all animals is 40% for all muscles. 

The Tyrannosaur could walk, at perhaps a brisk 9 mph with its 
long legs, and a 3 kg Tyrannosaur could definitely run. But a full size 
version could not. 


