GALILEO: SCALING

What changes when we alter the physical sizes
of objects other than the physical sizes themselves?

Why are there no giants?

Physical size is important for most of the thingsdaeal with in
life. Buildings, animals, cars, trees, ... For exantpkemovie King Kong is
intriguing first and foremost because a 60 fodtgatilla does not exist. Why
not? A six inch tall gorilla could exist (small mays, baby gorillas.) Other
animals that size do, so there is nothing impossblout a miniature gorilla.
(Probably not as a box office hit, however). Whg #irere no giants?

Galileo was the first person to think about sucbsgns carefully.
He developed a way of thinking about the sizesbpéais in a systematic way
that is called scaling. Today scaling is used widielcomparative anatomy and
engineering. For example if you are building aplame you might first want to
build a scale model and test it in a wind tunne&uYhen need to know how to
scale up the test results to find the lift and dages that will exist for the full
size aircratft.

Let’s begin by thinking about the physical sizesmhple objects.
As we scale up or down the dimensions of a splereXample, how do its
surface area and volume change?

SHOW weight comparison of one inch and two inchnditer steel
spheres. For a sphere, volume =r#73so doubling r multiplies the volume and
hence weight by 8.




VOLUME OF ONE MILLION
GRAINS OF RICE
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Here we see some containers with rice in them. The
largest has one million grains of rice in it. Makeough estimate of
what you think is the volume of one million grainfsrice.

Answer: 0.02 i The volume of an object is the
product of its length, width, and depth. In thiseall are a fraction
of a meter, so the volume is a small fraction olibic meter.




SCALING A CUBE
y
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Note: L ~ W3~ A2 and A~ \?3

Here we have a cube with side of length L. If wdtiply the length
by k we create a cube of larger or smaller sizeaWllappens to its surface area and
volume when we do this?

The area is multiplied by?lkand the volume by3kIn fact this is true
for any three dimensional object. If we multiply thle dimensions of an
automobile by k, its surface area or cross sedtiarg is multiplied by 4and its
volume by R. So far this is just geometry. Galileo took thimking one step
further.

Suppose you see a chandelier hanging from thengealia small room
and you like its design. You want to make a layes to hang in a larger room.
Let’s say you decide to double each of its dimemsid hen since you multiplied its
volume by 8, you also multiplied its weight by 8W consider the rope that
supports the chandelier. Its strength is propoaliom its cross sectional area which
Is a measure of how many fibers it is made ofolf wouble each of the dimensions
of the rope, you have multiplied its cross secti@maa by 4. So it can support four
times the weight of the original rope, but it negm&old 8 times as much. If the
original rope was close to its limit, then the scatope will not support the scaled
chandelier.

Galileo realized that simple geometric scaling dogswork when the
mechanical strength of structures is taken int@act

Note also that L scales (is proportional to ) thbecroot of V or the
square root of A. And A scales as V raised to #3egppwer. These results are valid

for any threedimensional object. 3




KING KONG

Multiply the dimensions of a gorilla by 10. Then its weight
is multiplied by 1000, and bone cross sectional area by 100.

The King Kong of the movie is simply a geometrigadtaled up
gorilla. It has the same proportions as a normallgpbut is about 10 times as
tall, thick, and wide. This has the effect of mpilging its weight by 1000 and its
bone cross sectional areas by 100.

If normal gorillas have bones just strong enougbatwy their bodies
in normal locomotion, then King Kong is in big tkda. The intrinsic strength of
the material bone is made from in animals of akksi(Calcium apatite embedded
in a matrix of collagen) is about the same. Thengjth of a bone is proportional to
its cross sectional area. Compressive failure rsciour a stress of about 2*4.0
N/m2 (29,000 Ibs/iA). Most animals produce stresses nearly this largeorous
activity. This means that a scaled up gorilla KKmng's size would not be able to
move around at all. Evolution could not producehsacreature.

Galileo realized that larger animals need thiclards compared with
smaller animals. Above is a sketch taken fifbmo New Sciences illustrating this
idea. The larger bone has three times the lengtihecdmaller bone. By what
factor should its diameter be scaled to be strogigh to support the animal’'s
weight? Answer: It's cross sectional area mustlbgdr by 27 so its diameter must
be scaled by (2¥¥or a little over 5. Three is not enough. In thetskesalileo
exaggerated, making the diameter larger by about 7.




EXPECTED BONE SHAPE
VARIATION WITH ANIMAL
MASS

If bone cross sections are determined by animal weight,
then we expect cross sectional area A ~ m where m is
the total animal mass.

Bone length should be proportional t&m

So skeletal mass should be proportional to
(ml.O)*(mo.ss) = mt33

How do we expect bone shape to change with animal
size? Since weight can be readily measured, weugdlanimal
mass as a measure of size. Skeletal mass caneatsadily
measured so we use this as a measure of the dize bbnes.

Then if the cross sectional area of bones is detbean
by the need to support the animal’'s weight, we ekjiee area to be
proportional to m, the animal’'s mass.

Animal volume, and hence mass, scale as the cube of
the linear dimension of the animal, and hence e<tibe of bone
length. So bone length should be proportional t8°nTherefore

the skeletal volume, and hence its mass shoulddgogional to
m1.33.

This is our expectation based on the assumptidn tha
bone cross section is determined primarily by ahineaght. How
does skeletal mass actually vary with animal méks# can we go
about finding out?




GENERAL SCALING
EQUATION

y=a¥

y = quantity being studied
X = quantity y varies with
a = coefficient

b = exponent

Graph on a logarithmic scale
IS a straight line with slope log(y)
equalto b

We have seen that when we scale an object geoaiBtyic
keeping its shape the same, often one quantitgevas a power of another
guantity, e.g. volume varies as the cube of thgtlescale. A general
equation that can include all the examples we lls@issed can be
written as above. y is the quantity we want to gfsdich as the skeletal
mass of animals. x is the quantity we think y v@math, such as animal
size or total mass. a is a coefficient and b aroe&pt.

When y = skeletal mass, and x = total mass, oureinod
predicts that b = 1.33.

To find out whether animals are actually built lier model
says, what we need to do is collect data on mamgads with a wide
range of sizes. Then when vy is plotted against & tmgarithmic scale, the
above equation forms a straight line with a slople.o

The equation above is general in the sense tbhahibe used
to find out whether any quantity y scales with atiyer quantity x. They
do not need to be geometric quantities as our shteteass example shows,
and the coefficient and exponent can have any sdhad the data require.
They are not limited to geometric values.




ACTUAL BONE SHAPE
VARIATION WITH ANIMAL
MASS

SKELETAL MASS (kg)
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Above is shown a graph of measured skeletal masdes
plotted versus total animal mass in kg. Both scatedogarithmic. The data
points do fall on a straight line, the slope of ebhis 1.09. This is less than
our expected slope of 1.33. What does this meamBl$iput, the skeletal
mass varies more slowly with animal size than oadeh predicted.

If the bones of a mouse have the right thicknessipport its
weight, the bones of an elephant must be too @amversely, if the bones
of an elephant have the right thickness to sugpdhen the bones of a
mouse must be too thick.

Our conclusion is that weight is not the only factfecting
animal skeletal shape. Animals do not just standraat. They also walk,
run, jump, etc. Studies show that animals of aksistress their bones to
near the breaking point in normal, vigorous acfivwe know this is true
for humans as well: Athletes are frequently & fes breaking bones.

Small and large animals therefore behave diffeyeMice and

squirrels jump and run; Elephants can gallop, sutlly walk, and do not
jump.

The coefficient in the above equation tells us thatkg animal
has a skeletal mass of 0.061 kg (6.2 kg for a 7Buggan).




RESTING METABOLIC
RATES OF MAMMALS

Maintains body temperature

Heat loss proportional to surface area %3M

So we expect Metabolic Rate ~2#1

An intriguing problem in comparative anatomy that
has remained controversial for more than a certasyto do with
the resting metabolic rate of mammals. When an angmot
exercising, its metabolism is needed mainly to ta@nbody
temperature. Assuming the outside temperaturelassvigody
temperature, which is true over most of the edhin metabolic
energy is being generated to replace heat losietgurrounding air.

When study of this question began during the early
1800s, it was assumed that the body surface saalbddy size to
the 2/3 power. That is, it was assumed that anilmale the same
shape, and are scaled versions of one anotherndie that this is
not so now, but at the time it was a reasonableepia start.

This leads directly to the expectation that théimgs
metabolism of mammals should scale &8 M




RESTING METABOLIC
RATES VS MAMMAL SIZE
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Once again we have developed a simple model for
how a measurable quantity should scale with angizal, and we
can test the model as we have done before. Datad®ascollected
on the metabolic rates of mammals from mice toledeps and is
shown on the graph above using logarithmic scéheleed the
points do fall close to a straight line so the iscpidea itself is
supported.

The straight line that fits the data, however hakbpe
of 0.75 instead of the expected 0.67. This diserepas well
outside the uncertainties evident by the scatt¢n@imeasured
points. Many proposals have been made during thesgaeral
decades to explain the slope of this graph. Evigéné7 is not the
slope of the graph, but what is the argument f65®.




RESTING METABOLIC RATE
FOR HUMANS

Metabolic Rate (Watts) = 4M>

For a 70 kg person, Rate = 70 Watts

The regression line from the previous slide for mammals can be
described by Rate (Watts) = 4¥fwith mass in kg. For a 70 kg person, this
corresponds to a resting metabolic rate of 70 Watts. So when you are sitting in
your room reading at a 100 W light, you are heating the room less than is your
light bulb.
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SPECIES IDEA

Each Species
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All Species
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One proposal that somewhat clarifies the situaton
this. We know that all animals are not geometnjcatlaled
versions of one another. Within a given speciesdvaw, this is
much closer to being the case. So if we separatetabolic data
among different species, what do we find?

The result is that each species can be represkntad
line with a slope of 0.67, which is what we explectanimals that
are simply scaled. Upon going from one speciestiter, the
various species lines group along the line witlopesof 0.75.
What changes between species is the coefficianttzeigeneral
scaling equation. Large animals have larger vadfi@sbut within
each species, the scaling value of b.

This is interesting, but it still does not expléne
value of 0.75 for all mammals.

Question: We started by assuming that animal serfac

area scales as®’. Is this accurate?
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BODY SURFACE AREA VS
MASS

- Body surface cm?

Above is a test of the surface area scaling of malsuiThe
points fall close to a straight line with a slogd®&7. So in spite of
differences in appearance of different specieswohals, our body areas
scale in the same uniform way with body weight.

So in spite of the naiveté of the early assumptan all
animals are geometric scale models of one anatleefind that surface
areas do scale that way even though different dailoak different. This
result by itself is a curiosity at least, and p@han indication that we are
missing something important. At this point we da noderstand why
surface areas scale so simply.

In addition of course this leaves us without anlaxation for
the metabolic exponent of 0.75. This a puzzle gédte explained.

An equation describing the above straight line s &lVP-67
with a = 10 when A is in ciand M in grams.

The heavy dots in the upper right part of the
graph above are for beech trees(!).
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SKIN AREA FOR HUMANS

Area = 0.1M7
with area in m,
M in kg.

For M =70 kg, Area = 1.76 n

From the regression line on the previous slide, the surface area
of animals can be described by the equation given above. This means (in case
you were curious) that the skin area of a 70 kg person is about 1.76 square
meters.

Someone weighing more or less can evaluate their skin areas
from the above equation.
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ENERGY COST OF RUNNING

Work done by leg muscles per step =
(Force)*(Contraction distance) ~ @}*(M 13) ~ M

Step length ~ M3 so steps per km ~ £
Work per km ~ (M)*(M/3) ~ M0-67

So work per kg per km ~ (M)*(M 1) ~ M-33

The energy cost of locomotion of animals is a
fascinating one with some surprising results. \iaat we say
about it in a general way?

The work done by any force equals the magnitude of
the force times the distance through which it dctshe case of leg
muscles this is the muscle force times the distahcentraction.
This is the work done per step by leg muscles.e&smascle force
Is proportional to its cross section, and contoactistance
proportional to its length, the work done per steales as muscle
volume or mass. Muscle mass is about 40% of bodss rfta
nearly all animals.

Distance covered per step is proportional to legtle
which scales as body mass to the-timed power. So the number
of steps per km scales as¥l

So based on these general arguments, we expect that
the energy cost per kg per km will scale ag
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COST OF RUNNING VS BODY
WEIGHT

T White mouse
; Kangaroo rat
Kangaroo rat
e
o White rat

0
Ground squirrel Human

Dog &

~. #Pony (140 kg)

Horse ® ™

3 o 4] ehs L 4 L]
e 10g o 100g - 1 kg 10k 100 kg 1000 kg
Body weight

Here we see the energy cost of running expressed af
Oxygen metabolized per kg of animal mass per krtigrors body weight in
kg. The data fall close to a straight line with@pe of— 0.33 as expected.

The negative slope shows that a larger animal cane m
efficiently move a kg of its mass over a distanta kilometer than can a
smaller animal. This difference is due entirelyhe fact that a smaller animal
must take more steps to go a km.

The cluster of points for humans lies somewhat alibe line,
probably because we are bipedal runners and atlttte animals shown have
four legs.

The above line is described by the equation Cistglof Oper
kg per km) = 0.8M-33

The cost for birds to fly can be evaluated simylavith the result
Cost (liters of Qper kg per km) = 0.26M?,

Surprisingly, birds transport themselves more gffitty than
running animals (using the same units of cost)s Thimainly due to the fact
that birds fly so much faster than animals of ailasinsize run.




COST OF RUNNING FOR
HUMANS

Energy cost = 1 Cal/kgkm
= 70 Cal/km for 70 kg

On the previous slide the points for humans was above the line,

with the cost of running being about twice that for quadrupeds(!). Changing

the energy units to Calories (ie nutritional calories) we find the energysost a
shown above.

This is remarkably efficient transportation. This result is
independent of speed, provided, of course that the person is running.
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HOW HIGH CAN YOU JUMP?

Energy needed to jump height h = mgh ~ M
Energy available from muscles also ~ M

So height h is independent of body size!

Jumper mass height

Flea 0.5 mg 20cm
Click Beetle 40 mg 30 cm
Locust 39 59 cm
Man 70 kg 60 cm

How high can different animals jump? Think of exdaspyou are
familiar with: dogs, cats, a horse, yourself. Heaen referring to a standing
high jJump. In a running jump, part of the kinetieeegy of running is converted
into height.

In fact there is not much difference in the heightsse animals can
jump. Why is that? It is simply a matter of scalilge have not talked about
energy yet, but we will see that to raise your eenf gravity a height h requires
an energy of mgh. This clearly scales as body weigh

Where does this energy come from? From leg musatekywe
have already seen that the work they can do alHesas M. So when we set
these two equal to each other, body mass M canaglsnd h is independent of
animal size.

Well, not quite. Very small creatures are limitgda friction. As
body mass increases, air friction becomes lessritapioand we see that locusts
and people both jump to about the same height.

At the large end of the scale, elephants don’t juvefp because
they are pushing the strength limits of their bosuied muscles just to walk
around. Midrange size animals do, however, all jump nearlyhéosame
height.
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COULD TYRANNOSAURUS

We started with King Kong, so let’s finish with @aher famous
monster. Tyrannosaurus rex was a bipedal carniam@ we have seen in
the movie Jurassic Park, that it could chase deepg at 40 mph. But
could this 6000 kg monster really run? This is méahe track and field
sense of having both feet off the ground at times.

The chicken is a 3 kg bipedal carnivore that cam amd very
well. So let’'s put them side by side to see whathuek.

From the picture above we can’'t immediately telbtrter we
are seeing a chicken scaled geometrically up ustihass is 6000 kg, or a
Tyrannosaur scaled down until its mass is 3 kginktwe can see from the
discussions today that a 6000 kg chicken couldunat

Estimates have been made that for a Tyrannosauntib
would need to devote about 85% of its body weighety muscle. The
chicken devotes about 15% of its body weight tortegscle, and the
average for all animals is 40% for all muscles.

The Tyrannosaur could walk, at perhaps a brisk B wigh its
long legs, and a 3 kg Tyrannosaur could definitaly. But a full size
version could not.
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