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F = 40 N
ma = 80 kg
ms = 15000 kg

as = F/ms = 40N/15000 kg
= 0.0027 m/s2 

aa = -F/ma = -40N/80kg = -0.5 m/s2

If tpush= 0.5 s, then vs = astpush=.0014 m/s, and 
va = aatpush= - 0.25 m/s.

ASTRONAUT PUSHES 
SPACECRAFT

An astronaut is floating around outside a spacecraft and gives it 
a push. Newton’s third law says that if he pushes on the spacecraft, it will push 
back on him with an equal and opposite force.

The spacecraft and astronaut will both be accelerated since 
there is a net force on each, and they will drift apart. They move at different 
rates, however, since they have different masses.

The velocity of both spacecraft and astronaut after the push is 
over will equal their accelerations during the push times its duration.

The same thing happens when the astronaut is insidethe 
spacecraft. After pushing on a wall, he/she will float away, and the ship 
accelerates also. One of the things astronauts must adjust to is to push on walls 
they encounter gently, since a hard push gives them too much velocity for 
comfort.
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Baffle

If we add a baffle to our propeller-driven
cart, the acceleration of the cart will:
a. Increase a lot
b. increase a little
c. not change
d. decrease a little
e. decrease a lot 

QUALITATIVE QUIZ

Here we modify the propeller example we saw earlier by adding 
a baffle. Does the baffle make a difference, and if so in which direction?

The propeller is pushed forward by the air it pushes back just as 
before, but now that moving air encounters a baffle. If the baffle simply stops 
the air, then it must push forward on the moving air, and the air pushes back on 
the baffle. This reduces the forward thrust of the propeller, reducing the 
acceleration of the cart. 

Newton’s third law is invoked twice here, and the forces on the 
cart are in opposite directions.
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NEWTON’S LAWS IN 
EVERYDAY LIFE

You are standing still, then begin to walk.
What was the external forced that caused
you to accelerate?

Hint: It is very hard to start walking if you
are standing on ice.

What force causes a car to accelerate when
a traffic light turns green?

The second law states that whenever a body accelerates, an 
external force must be present to cause the acceleration. It is not always 
obvious what this force is even in very ordinary circumstances.

In order for you to accelerate forward when you start walking, 
something must push you forward. What is it? It must be the sidewalk. You 
push back with your feet, and the sidewalk pushes you forward by an equal 
amount according to Newton’s third law. This could not happen without 
friction. 

You may think that it is your pushing against the sidewalk that 
causes you to move forward, but it is really the sidewalk pushing forward on 
you, otherwise you would not accelerate in that direction.

Same argument for a car accelerating.
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NEWTON AND THE APPLE
Newton knew that at the surface of the earth
bodies (apples) fall 5 m in the first second, and 
that this acceleration is due to earth’s gravity.
He showed that the gravity force is the same as
if all earth’s mass were at its center, 4000 mi
from the surface. (This required inventing 
Calculus).

He wondered whether the same force attracts
the moon towards earth. 

There is a story you have probably heard that Newton was 
stimulated to think of his Universal law of Gravitation by seeing an apple fall 
at his mother’s farm in Woolsthorpe. This might even have happened. He at 
least said it had happened years later while having tea there with a friend. 

At that time a gravity force was being thought about by several 
people and commonly thought to decrease inversely as the square of the 
distance between the two objects attracting each other. 

The earth and the apple attract each other resulting in the 
acceleration studied by Galileo. Does the same force, reduced by the square of 
the distance, cause the moon to fall towards the earth? 

Does the moon fall towards the earth? It remains the same 
distance away, so at first it does not seem to do so, but let’s look more 
carefully into this.
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ACCELERATION OF OBJECT 
MOVING IN A CIRCLE

Speed is rate of motion without regard for
direction. A car goes 60 mph.

But to tell where the car goes, direction must
be specified as well as speed.

The term velocity is used to describe both speed
and direction.
Acceleration in Newton’s second law, is the 
rate of change of velocity, not just speed.

The acceleration of an object is its rate of change of velocity,
not just speed. For example a car going around a corner at a constant speed of 
25 mph is accelerating, and you as a rider in the car feel that acceleration. The 
seat of the car must push on your body to make it accelerate. 

Turning left, the car seat must push you to the left. 

The moon is moving (nearly) in a circle about earth with 
constant speed. That means its velocity is constantly changing. If it were not, it 
would continue in a straight line. So it is accelerating. 

Let’s see if we can understand the magnitude and direction of 
that acceleration. This means we want to study objects that move uniformly in 
a circle.
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In studying uniform circular motion we will be using 
the same ideas of kinematics (x, v, a) and Newton’s Laws of 
motion that we have been studying, but we will apply them to 
situations involving motion in  circles. 

A new word in involved: Centripetal. This just means 
directed towards the center. A centripetal acceleration is one 
directed towards the center of the circle in which an object is 
moving.

Roller coasters at amusement parks use circular 
motion to achieve apparent weightlessness momentarily. This can 
occur near earth where g is still strong, but the object behaves in 
some ways as if it were far from any star or planet.

The example we are working towards is the moon, in 
order to understand how Newton compared the fall of an apple with 
the motion of the moon, taking his first step towards understanding 
gravity.

UNIFORM CIRCULAR MOTION

• Centripetal Acceleration
• Centripetal Force
• Example: The moon
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The definition of uniform circular motion is very 
simple. There are many examples such as these. Many others 
involve such things as a centrifuge, any motor with a rotating 
shaft...

Since the same ideas can be used to describe such a 
wide range of phenomena, they will prove to be very useful.

In all of these examples the speed, but not the velocity 
is constant. The magnitude of the velocity is constant but its 
direction is constantly changing.

Another quantity that is constant is the rotation rate 
(revolutions per second, day, year). For example the earth rotates at 
a constant rate of once per day, so all objects fixed to the earth are 
undergoing uniform circular motion.

Uniform Circular Motion is the motion of an
object traveling at constant speed in a 
circular path.

Examples:

washing machine during spin cycle

ball whirled around on a string

car turning a corner

moon in orbit around Earth

spot on a phonograph record
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Here we have an object moving in a circle with a constant speed. Why 
is there any acceleration? Simply because velocity is a vector quantity, and in this 
case, its magnitude doesn’t change, but its direction does. 

Consider our moving object at two times: It has moved from r zero to 
r. Here I have moved the two r vectors away so we can see them more easily. The 
change in r is delta r as shown.

Since the position is changing with time, there is a non-zero velocity. 
The velocity vectors are shown in red. The velocity is perpendicular to the radius  
vector at all times during uniform circular motion. The velocity is always tangent to 
the circle describing the motion.

But in that case, the velocity itself is rotating around in a circle just 
like the radius vector. Here I have moved the two velocity vectors away so we can 
see them also. Because v is always perpendicular to r, the angle between the two r 
vectors is the same as that between the two v vectors. 

This means that the r triangle is similar to the v triangle. They have the 
same shape. One thing that means is that the ratios of corresponding sides are 
equal. We also see that as ∆t becomes small, ∆v is perpendicular to v just as ∆r is 
perpendicular to r.

r0

r
θ

r0

r
∆r

θ

v0

v ∆v

v0
v θ

CENTRIPETAL 
ACCELERATION
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From the similarity of the triangles we see that the 
change in r divided by r is equal to the change in v divided by v 
during the same small time interval ∆t. This allows us to solve for 
the centripetal acceleration magnitude as shown. This is a very 
simple and useful result: Whenever an object moves in uniform 
circular motion, it is undergoing an acceleration equal to v2/r.

But a is a vector also. What direction does it point?  
Looking at the previous slide we can see that a must be 
perpendicular to v just as v is perpendicular to r in the limit as theta 
(delta t) gets very small. 

∆r/r = ∆v/v

And,  ∆r = v∆t    so

∆v = v(v∆t)/r
∆v/∆t  =  v2/r

Centripetal Acceleration = ac

ac =   v2/r

The centripetal acceleration points
radially inward toward the center of the circle. 

ac = v2/r
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Here we show the relative orientations of r, v, and a 
that we have just established for uniform circular motion. This is 
quite different from our linear F = ma problems so far, where the 
relative orientations of these vectors could be anything depending 
on the circumstances.

In this way uniform circular motion is simpler than 
linear motion problems.

SHOW rotating table with accelerometer on it. This 
clearly shows that there is an acceleration whose magnitude can be 
maintained nearly constant, but whose direction rotates around with 
the table. 

r

v

a

RELATIVE DIRECTIONS
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Here is a game we have all played: Whirl a ball around on a 
string. Let us define T to be the period of the motion ie the time for the ball to 
go around one time. As long as we keep it moving with a constant period and 
radius, it is exhibiting uniform circular motion. For the given radius and 
period, what is the magnitude of the centripetal acceleration?

We know the radius, so all we need is the speed. How do we 
find that? The period is the time for one round trip, ie one time around the 
circle. How far does the ball go during one period? Just the circumference of 
the circle. So the speed (magnitude of the velocity) is 2 pi r divided by T 
which is 1.6 m/s in this case.

Then the centripetal acceleration is just the velocity squared 
divided by the radius, or 5 m/ss.

Question: What if I speed the ball up so as to cut the period in
half. What is the centripetal acceleration now?

BALL ON STRING

• r = 0.5 m, T = 2 s. What is ac?

• v = 2πr/T = 3.14/2 = 1.6 m/s
• ac = v2/r = 2.5/0.5 = 5 m/s2

• What if we cut the period in half?
• ac quadruples to 20 m/s2
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Newton tells us that when there is an a  there will be 
an F. The centripetal force is not a new special kind of force, like 
friction, or gravity. It is simply the name we give to whatever force 
exists in a situation where uniform motion in a circle is taking
place, that causes the object to move in that way. It must always 
point toward the center of the circle, and have a constant magnitude 
as long as v and r remain constant.

In the example of the ball on the string we just saw, 
the centripetal force is provided by the string tension.

Centripetal Force

• The name given to the net force needed 
to keep a mass m moving with speed v 
in a circle of radius r.

• Magnitude:  Fc = mv2/r
• Toward the center of the circle
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A car goes around a corner on a flat road. During the 
time it is turning, we can approximate its path as an arc of a circle, 
so for a time it is undergoing uniform circular motion.

What provides the necessary centripetal force, and 
with what maximum speed can it go around the corner? Friction 
force between the tires and the road. 

Racing cars can experience as much as 4 g’s of 
horizontal acceleration due to their special tires and large 
downward force on the car provided by the air. Production cars are 
limited to 0.5 – 1 g of horizontal acceleration.

If you turn a corner with v = 10 m/s (about 25 mph). 
and R = 10 m (30 ft), then ac = 10 m/s2 = g. This is too fast for such 
a sharp corner for a production car. 

How fast can a car turn a corner on a flat road?

r

What provides the centripetal force?

EXAMPLE
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A normal force FN is the component of the 
force a surface exerts on an object that is
perpendicular to the surface. 

W

FN

DEFINITION OF NORMAL 
FORCE

When you stand still on a sidewalk, you are not accelerating 
along the sidewalk, so there is no force on you in that direction. In that case 
the only force the sidewalk exerts on you is upward, opposing gravity. This 
force is perpendicular to the sidewalk surface. This is called a normal force. 
Normal is a term that refers to something being perpendicular to a surface or 
line. 
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In a vertically accelerated reference frame,
eg an elevator, your apparent weight is just 
the normal force exerted on you by the floor.

Apparent weight = true weight + ma
where a = upward acceleration

FN =  mg  +  ma

Applying Newton’s second law:
FN - mg = ma,   or

APPARENT WEIGHT

When you are in an elevator and it begins to move upwards, 
you feel heavier than usual for a moment. As the elevator slows and stops, you 
feel lighter for a moment. What happens in these examples, is that the normal 
force the elevator exerts on you increases or decreases as the elevator 
accelerates.  We can understand this using Newton’s second law.
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SHOW Wine glass on tray.

SHOW Loop the Loop

This resembles the roller coaster rides that have become so much
fancier in recent years. With this equipment we can observe that it takes a minimum 
speed for the ball to make it over the top without leaving the track. When it just 
leaves the track momentarily at the top, what does that mean? The normal force 
between the track and ball has become zero. Any slower than this and we’re in 
trouble.

Here is a diagram showing the forces involved. At the bottom the
normal force and gravity oppose each other as we are accustomed to. At the top, the 
normal force and gravity act in the same direction. The minimum speed for 
weightlessness corresponds to normal force = 0. In that case the only centripetal 
force is mg. This gives us a condition for v which is independent of m. So for a 
given r, all objects will become weightless at that v just at the top.

At the bottom, the situation is different: Now the normal force must 
provide the centripetal force needed for the object to move in a circle, as well as mg. 
If your roller coaster is going the same speed at the bottom as the top, you will feel 
twice as heavy as usual at that point.

mg

FN

mgFN
At the top:
Minimum v for FN = 0:
(apparent weightlessness)

At the bottom:
FN = Fc + mg

Fc = mg

mv2/r = mg

v = (rg)1/2

VERTICAL CIRCULAR 
MOTION
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Here are some numbers for a roller coaster doing a 
loop-the loop using reasonable dimensions. 10 m/s (about 25 mph) 
is not a very great speed. This is made possible by the rather small 
radius of 10 m.

At this speed the roller coaster is in free fall at the top 
of its motion.

Roller Coaster Numbers

r = 10 m for vertical loop
For apparent weightlessness at top:

v = (rg)1/2 = (10*9.8)1/2 = 10 m/s



18

NEWTON’S CANNON
v

Newton imagined mounting a cannon on a tall mountain so it 
would be above the earth’s atmosphere. Then shooting it horizontally with a 
large muzzle velocity. Would it be possible for the cannon ball to go 
completely around the earth, so it could hit the cannon from behind? 

This was purely an imaginative game for Newton. Today we 
would say the cannon ball is a satellite in low orbit. 

The speed needed can be found from our equation for 
centripetal acceleration. We want ac to equal g. The earth’s radius is about 
6000 km, so we have

g = v2/R so v2 = 10*6*106  and v = 8000 m/s.
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ACCELERATION OF MOON
Does a gravity force cause the moon’s 
acceleration toward earth? If so, does it
vary inversely as the square of the distance?

ac moon= v2/r = (2πr/T)2/r 
r = 3.85*108 m, T = 27.3 days
ac moon= 2.79*10-3 m/s2

ac moon/g = 2.79*10-4

(rearth/rmoon)
2 = (4000mi/240000mi)2 = 2.78*10-4

Back to the apple and the moon question. We know the apple falls with 
acceleration g = 10 m/s2 near the surface of the earth. Newton showed that the earth’s 
gravity behaved as if all the mass of the earth were at its center, so the apple is 4000 mi 
from the center of the earth.

The acceleration of the moon towards earth is given by our equation for 
centripetal acceleration. So Newton was able to evaluate the ratio of the moon’s centripetal 
acceleration to g. 

Now the question is, does this acceleration decrease as the square of the 
distance?  He found that the ratio of distances squared was in fact about equal to the ratio 
of the accelerations.

This led him to propose that the same gravity force that causes the apple to 
fall, also causes the moon to accelerate towards earth. 

The force we are familiar with in everyday life holds the moon in its orbit 
about earth. This idea completely turns about the old Greek view that celestial objects 
behave differently from things here on earth.

Encouraged by this result, he then went on to show that this same force 
causes the planets to move in their orbits about the sun. 


