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Work done by a constant force

Kinetic Energy

Gravitational Potential Energy

Simple Machines

WORK AND ENERGY

The ideas we shown above were developed in the 
generation after Newton. Here we will discuss work and 
mechanical energy. These are important concepts, developed 
for mechanics problems that have found wide application in 
other areas. Today we know that nutritional energy is 
important, as are electrical energy, nuclear energy, thermal 
energy, and so on. Our understanding of energy and its 
usefulness began with mechanical energy.

First we define work done by a constant force. 
Kinetic energy is energy a body has due to its motion. 
Gravitational potential energy is energy a body has due to its 
position relative to a massive body such as the earth. And 
simple machines are examples of the usefulness of the 
concept of energy.
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The concept of work is very useful in physics. It will allow 
us to solve a number of problems more easily than if we were to use 
F = ma alone. 

If I drag a weight across the room through a displacement 
x, using a force F, then the work done is Fx. All that counts is the 
component of F in the direction x. 

SHOW: Lifting up a weight, lowering it down, carrying it 
across the room at constant height.

SHOW pushing on the wall. No work is done.

So our everyday idea of doing physical work differs from 
the definition we use in physics. I could carry bags of fertilizer across 
the room, put them back down, and I have done no work at all 
according to our definition, but I would be exhausted and have sore 
muscles the next day.

Work does not have a direction associated with it like 
force and displacement. Technically this means that  work is a scalar 
quantity. The same amount of work is done whether  a weight is 
dragged North, South, East, or West. Scalars are easier to work with 
than vectors, such as force and displacement, so any time we can
approach a problem using work rather than forces, it is probably a 
good idea to do  so.

WORK

x

F

W = Fx

SI unit of work = Newton-meter = Joule
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In the previous example, the person dragging the 
box was doing work against an opposing force, namely 
friction. So the work was being done against friction.

Here is an example where static friction plays a 
role, but we ignore air friction, so work is being done, but not
against an opposing force. The crate is being accelerated. Its 
velocity is increasing.

The friction force needed to accelerate the crate 
is given by Newton’s second law. Here we assume the static  
friction force is large enough that the crate does not slip.

In this example, work is done on the crate and the 
result is its velocity has been increased.

Accelerating a crate on a truck

f

mg

FN

f = ma = (150)(2) = 300N

a = 2 m/s2

m = 150 kg

If the truck accelerates for  x = 50 m, the work 
done on the crate is:

W = (f)x = 300(50) = 15000 J

EXAMPLE
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In this example, work was done on the crate. What was 
the result? It speeded up. 

It is useful to define a new quantity, the Kinetic Energy, 
that measures the work done in producing motion.

Here we assume the forces doing the work are constant, 
so the acceleration is also constant. Then the work done is mass
times acceleration times distance.  Now we use our expression for 
the distance covered under constant acceleration to relate the work 
done to the change in square of the velocity. 

By defining KE to be 1/2mv2 we find that the work done 
is equal to the change in the kinetic energy of the crate. This is 
called the Work-Energy Theorem. When there is a net force on an 
object so that it accelerates, the work done is equal to the change in 
its kinetic energy. 

At this point all we have done is define a new quantity so 
that it has this property. We would not be doing this however if it 
were not an idea with usefulness far beyond this accounting 
neatness.

KINETIC   ENERGY

• The work done on the crate is W = max
• Use x = 1/2at2 

• W = 1/2m(at)2 = 1/2mv2

• Kinetic Energy = KE = 1/2mv2

• SI unit of kinetic energy = Joule
• Work-Energy Theorem: W = KEf - KEi
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In our crate on a truck example, we found that the 
work done on the crate in accelerating it was 15000 J. Let’s 
use this to find the velocity.

We could have found the velocity by finding the 
time and knowing the acceleration, but this is easier. If we 
know the work done in accelerating a mass, the kinetic 
energy gives us the speed immediately.

The work-energy theorem is more general than 
the derivation we used indicates. It also applies when the 
forces and accelerations are not constant. 

Crate Example Backwards

W = 15000J. What is v?

1/2mv2 = 15000, so
v2 = 30000/m = 30000/150 = 200(m/s)2

v = 14.1 m/s
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Here is a space ship with given mass and initial 
velocity drifting through deep space. It is far from stars and 
planets so we can ignore gravity. 

Its rocket engine is now fired, providing a force of 
500,000N in the direction of motion. The engine continues 
firing over a distance of 3 million meters. What is its final 
speed?

The work-energy theorem applies directly here. 
The work done is the force times distance, and since they are 
in the same direction, the speed and KE increase. The work 
done is huge: 1.5*1012 Joules. But these big numbers are no 
problem using exponential notation. 

Now the final KE is equal to the initial value plus 
the work done. And the final velocity can be found from the 
final KE. 

Example: Space Ship

• m = 50000kg, v0 = 10,000 m/s
• Engine force = 500,000 N, x = 

3,000,000m. What is final speed?
• W = (5*105N)(3*106m) = 1.5*1012 J
• KEf = KEi + W = 2.5*1012 + 1.5*1012 = 

4*1012 J
• vf = (2KEf/m)1/2 = 12,600 m/s
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SHOW mass. Lowering it, the gravity force and 
the displacement are in the same direction, so gravity is doing 
work on the mass.

If I raise it, gravity is doing negative work on the 
mass.

The work done is just the force times the change 
in vertical height. 

What if we don’t move vertically, but at some 
other angle? If I carry the mass horizontally its gravitational 
energy does not change. Its gravitational energy remains the 
same.

Gravitational Potential Energy

• The gravity force can do positive or 
negative work on an object.

• W = mg(h0 - h)
• All that counts is the vertical height 

change.
• PE = mgh
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Pile drivers are used to pound large pilings into 
the ground. Huge driving forces are needed. Here we have a 
small version of a pile driver that can illustrate how they work. 

The mass falls through a height h. Gravity does 
work on it, increasing its kinetic energy. 

Now the mass encounters the nail. The nail 
pushes up on it as it drives the nail into the wood. The nail 
does negative work on the mass, slowing it down and 
stopping it. 

Using the work-energy theorem twice, we can 
relate the nail force to the gravity force. 

SHOW the pile driver pounding the nail into wood.

The same thing happens when we use a hammer 
to pound in a nail. In this case it is not gravity but the force of 
our hand that gives the hammerhead its KE. We accomplish 
the same thing: We can multiply the force our hand can exert 
by giving the  hammerhead KE and letting it give that energy 
to the nail, quickly pounding it in. 

M

Mass is dropped on a nail from a 
height h.
Wg = mgh = 1/2mv2

F = mg(h/d)

Wn = -Fd = -1/2mv2

It exerts force F on nail, pushing it
into the wood a distance d, and 
coming to a stop.

EXAMPLE: PILE DRIVER
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The lever is one of the greatest inventions of the 
ancient world. Archimedes understood levers and explained 
the lever law. We use levers all the time. Every time we wave 
our arms or walk, we are using muscles connected to our 
bones in such a way as to create levers.

A lever as shown here is just a stick. When work 
is done on one end, it is also done by the other end. The 
lever cannot store up work to be done later. It is a passive 
object. So the two amounts of work must be the same.

Here we have a lever which has been rotated 
through an angle by pushing on one end. The other end also 
exerts a force. The two forces will not be equal if the two 
sides of the lever are of different lengths, as shown here.

This leads us to the lever law: f/F = L/l. We can 
use the lever to multiply force.

SHOW lever. A teeter totter is a simple example of a lever.

l

L

Work done on one end = work done
by the other end. 

d

D

f

F

fd = FD

f/F = D/d = L/l

THE LEVER
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Our work-energy theorem says that the net work 
done by external forces equals the change in KE of an object. 

When gravity does work on a mass that is moving 
downward, its potential energy, mgh, has been decreased. 
So the work done is equal to the negative of the change in 
potential energy.

The total mechanical energy is the sum of kinetic 
and potential energy. If friction is present, the work it does is 
usually negative, since it opposes the motion, in which case 
the total mechanical energy decreases.

.

W = 1/2mvf
2 - 1/2mvi

2 = ∆KE = - ∆PE

∆KE + ∆PE = 0

W = -∆PE

Mechanical Energy = E = KE + PE = CONSTANT

WORK-ENERGY THEOREM:  
GRAVITY DOING THE WORK

When friction can be ignored
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This statement of conservation of mechanical 
energy follows immediately from the work-energy theorem.

So we usually are saying that the mechanical 
energy remains constant as long as friction forces are not 
present, or are not large, of if they act perpendicular to the 
displacement and so do no work on the object.

Principle of Conservation of 
Mechanical Energy

• E remains constant as an object moves 
provided that no work is done on it by 
external friction forces.
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The pendulum is an excellent example of a simple 
mechanical system for which the mechanical energy remains 
nearly constant as it moves. The string tension force does no 
work on the mass since the motion is always perpendicular to 
that force. So we only have to contend with air friction which 
is not large as long as the velocity is small. 

If I pull the pendulum off to one side and release it 
from rest, its initial KE is zero. It’s gravitational PE has been 
increased from its initial value at the bottom of the swing, 
which we can call zero as a reference point. 

As the mass swings, its KE increases as its PE 
decreases.At the bottom of the swing, KE is a maximum, and 
PE is back to zero. Then it begins slowing down as it rises. 
The height to which it rises on the other side should be the 
same as that from which it was released.

Galileo intuitively understood all this in his work 
with pendulums and inclined planes.

Forces: Gravity 

E = KE + PE remains constant as 
pendulum swings

Tension (does no work)

EXAMPLE: PENDULUM
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Drop a ball from height h. Its initial energy is all 
potential, equal to mgh. Just before it collides with the floor, it 
energy is all kinetic. Just after the bounce, if no friction forces 
have  acted, its energy is the same as before, and is all 
kinetic, therefore its speed must be the same.

As it rises it converts its kinetic energy to potential 
energy, doing the reverse of what it did during the fall.

The ball rises to the same height it had initially. 
This is called an elastic bounce, or elastic collision. In reality 
no ball is perfectly elastic. Some energy is lost to friction 
during the collision with the floor when the ball, and also the 
floor are distorted by the force between them needed to 
accelerate the ball.

SHOW balls of varying elasticity bouncing.

SHOW double ball bounce. Does this violate 
energy conservation? What is happening here?

h

Initial

-vf

Before
bounce

vf

After
bounce

BOUNCING BALL
E = PE = mgh

E = KE = 1/2mv2
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Here are the two balls falling towards the floor just 
before any collisions occur. On the right we see the two balls 
just after the big one bounces but before the little one 
bounces off the big one. Since the big ball reversed its 
velocity in the bounce, the relative speed between the balls is 
now -2v.

If the collision between the two balls is elastic, 
then this relative velocity will just be reversed in the collision. 
Then the relative velocity will be +2v.

If the big ball is massive compared with the little 
ball, its velocity relative to the floor is still nearly the same. 
Then the velocity of the little ball relative to the floor is given 
by following our notation and adding to the relative velocity, 
the velocity of the big ball relative to the floor.

So the little ball is moving up at 3 times the speed 
it would have if we dropped it alone. It then will rise 9 times as 
high as the point from which it was dropped.

-v

-v

-v

v

Just after big ball hits floor, vbB = -2v

f

b

B

h = vbf
2/2g = 9v2/2g = 9h0

and vbf = vbB+ vBf= 3v. How high will it rise?

Just after little ball hits big ball, vbB = 2v

DOUBLE BALL BOUNCE
A problem in relative motion
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Here is a prescription for solving problems using 
the conservation of mechanical energy. Here we assume 
gravity is the principle force in the problem.

Other forces that act perpendicular to the 
displacement do not invalidate the conservation of 
mechanical energy. Examples: String tension force for a 
pendulum. Normal force for a ball rolling down an incline.

The choice of where the gravitational PE is zero is 
arbitrary, so do this for maximum convenience. Once this 
choice has been made, don’t change it.

Then it is just a matter of writing down the 
expressions for initial and final KE +  PE and solving the 
resulting equation for the unknown as we did for the pile 
driver and bouncing ball. 

Using the Conservation of  
Mechanical Energy

• Identify important forces. Friction forces 
must be absent or small.

• Choose height where gravitational PE is 
zero. 

• Set initial and final KE + PE equal to 
each other
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A roller coaster swoops down for a vertical drop of 
60 m. Assume it started with zero initial velocity. What is the 
speed of the riders at the bottom?

There are two forces present besides gravity. 
Friction and the normal force the track exerts on the wheels 
of the coaster. Here we simply ignore friction. That means of 
course that the actual speed will be less than we calculate 
here. The normal force on the wheels does no work since it is 
perpendicular to the motion at all times. 

If we choose the gravitational PE to be zero at the 
bottom, then we have only PE initially, and only KE at the 
bottom, simplifying the equation a bit.

Note that the mass cancels out so all roller 
coasters will move with the same speed after the same 
vertical drop. As we have seen, Galileo came to this same 
conclusion using a pendulum and careful reasoning.

Roller Coaster

• After a vertical drop of 60 m, how fast 
are the riders going?

• Neglecting friction, mechanical energy 
will be conserved.

• Ei = mgh   Ef = 1/2mv2 

• v = (2*9.8*60)1/2 = 34.3 m/s (76 mph)
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Given this measured final speed, how much work 
did friction do on a 60 kg rider? 

The work-energy theorem tells us that the net 
work done by friction forces is just equal to the final 
mechanical energy minus the initial mechanical energy. We 
can evaluate both giving -4600 J as the work done by friction.

The work done by friction is negative because the  
friction forces act to oppose the motion. As the coaster 
moved down the slope, friction forces are directed up the 
slope, acting to slow down the coaster. 

Roller Coaster Again

• If the final speed is 32m/s, how much 
work was done by friction on a 60 kg 
rider?

• Wnc = Ef - Ei = 1/2mv2 - mgh
• =  1/2*60*(32)2 - 60*9.8*60
• =  30700 - 35300 = - 4600 J
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Power is a measure of how quickly work is being 
done. A more powerful engine in your car can make it 
accelerate at a greater rate. 

Power is  the rate at which work is being done, or 
in SI units, J/s. This unit is given the name Watt after James 
Watt who developed the steam engine.

A commonly used measure of power is the 
horsepower, originally chosen to represent how rapidly one 
horse could do work, which is equal to 746 W.

If when an object is moving, and we know the 
force producing the motion and the average speed, then the 
average power is  P = Fv. 

Power

• P = Work/Time = W/t
• SI unit = J/s = watt (W)
• 1 horsepower (hp) = 746 W
• If a force F is needed to move an object 

with average speed vav, then the power 
required is Pav = Fvav
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We are given a car that accelerates at 5m/ss for 6 
s, and we know its mass. Then the power is easy to obtain 
using newton’s second law, and kinematics to find the 
average velocity. 

Accelerating a Car

• A 1500 kg car accelerates with a = 
5m/s2 for 6 s. What power is needed?

• F = ma = 7500 N 
• vf = at = 30 m/s so  vav = 15m/s
• Pav = Fvav = 1.1*105 W  (151 hp)
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Now consider a car at constant speed on a level 
road. The engine must provide a forward force to overcome 
friction.

Given these numbers we see that the power 
required is 5400 W, or about 7.2 hp. As we can see from 
these two examples, large engine power is needed for 
acceleration, not for maintaining reasonable highway speeds. 

When you drive a car around town, the average 
power needed is quite small, much less than the typical 
engine powers in today’s cars. 

Engineers are developing hybrid cars that use a 
small gasoline engine running at its most efficient speed all 
the time running a generator, in combination with electric 
motors to power the car. This results in better gas mileage, 
and considerably less air pollution.

Car at constant speed

• Car going 60 mph (27 m/s) requires F = 
200 N to overcome friction.

• What power is required from the 
engine?

• P = Fv = 200*27 = 5400 W = 7.2 hp
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Air friction force = f = kv2

P = fv = kv3

P = 1 kW for v = 25 mph

What power does Superman need to go
50 mph?

P = 1 kW(v2/v1)3 = 8 kW

TOUR DE FRANCE
What power does cyclist need?

A cyclist does work against air friction in pedaling 
a bicycle. Here we assume the road is level and there is no 
wind. At typical cycling speeds, the friction force is 
proportional to the square of the velocity. That means the 
power needed to maintain a fixed speed is proportional to the 
cube of the speed. That is why increasing your speed 
significantly is so difficult. 

Professional tour riders go about 25 mph, and 
must be doing work at the rate of about 1 kW to maintain that 
speed.

If Superman existed, what power would he need 
to generate to cycle 50 mph?

The power scales as the cube of the speed, so to 
double the speed, the power must be multiplied by 8. 

Superman would not be able to maintain that 
speed, however, he would have to sweat 8 times as fast as a 
normal cyclist, and since water does not diffuse through steel 
nearly as fast as it does through human skin, superman 
would overheat and eventually melt. 
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Our use of the conservation of mechanical energy 
ignores the possible existence of other forms of energy. Even 
in the case of the car we just discussed, other forms are 
important. For example, the gasoline in the  tank represents a 
chemical energy which can be converted to mechanical 
energy with a certain efficiency. 

The principle of conservation of energy has no 
known exceptions. All processes we are aware of obey this 
principle. Mechanical energy is a good example of this 
broader principle.

This is one of the grand principles in all the 
sciences. It can be a slippery one to apply however since 
energy can be changed from one form to another. 

Principle of Energy 
Conservation

• Energy can be neither created nor 
destroyed, but only converted from one 
form to another.


