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THE TWO PRINCIPLES

The laws of physics are the same in all unaccelerated
reference frames. 

The speed of light is not affected by the motion of 
its source. 

These are the two principles from which all the 
consequences of special relativity can be deduced. Neither of these 
should be new to you. The first principle was stated clearly by 
Galileo. He wrote that if you are in a closed room in a ship, and 
have brought with you anything you like to make observations of,
including fish, insects, etc, that nothing will take place in the room 
to indicate whether or not the ship is moving. 

The second principle is one we have seen good 
experimental support for. We saw that gamma rays emitted by 
pions moving at 0.99c, travel at the same speed as light emitted by 
a stationary source. One could argue that the second principle is 
implied by the first since Maxwell’s equations state that the speed 
of light is c. Stating both principles makes the constancy of c for all 
observers more explicit. 
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SOME SPEEDS

Example Speed v/c

Earth about Sun 30km/s 0.0001
Sound in air 343 m/s 0.0000011
90 mph fastball 40 m/s 0.00000013
10 MeV electron 300000 km/s 0.99

c = 1 ft/ns

Before pursuing the consequences of the two principles, let us 
look briefly at some examples of speeds of objects we are familiar with. 
Everyday objects have speed that are very small compared with the speed 
of light. In order to see clear examples of the consequences of the 
principles of relativity, we will need to imagine objects moving at nearly 
the speed of light, or as is commonly said, at relativistic speeds.

Relativistic speeds are common for electrons or protons 
emerging from a particle accelerator. We need to understand special 
relativity in order to analyze the collisions of these particles with their 
targets. 

To discuss the implications of the principles, we will need to 
imagine whole reference frames moving at relativistic speeds. Einstein 
called these imaginings “thought experiments”. 

Think of our imaginary reference frame as a huge room, big 
enough that it takes light an appreciable time to go from one side of it to 
another. There are meter sticks or tape measures available to determine 
positions in the room, and there are clocks wherever we need them to time 
events that occur. Our reference frame is unaccelerated, but likely will be 
moving relative to other reference frames with relativistic speeds. 
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Synchronizing Clocks in our 
Reference Frame

Place clocks in their needed locations (probably far from
each other), and use light signals to synchronize them.

Clock A sends a light pulse to clock B where it is detected
and reflected back. The two will be synchronized if when
the pulse reaches it, clock B reads:

tB(receive) =   tA(sent) + ½(tA(return) – tA(sent)) 

We will be carrying out various thought experiments both in 
our reference frame and between two reference frames in relative motion 
with each other. To get started we need to know how to synchronize the 
clocks in our frame. There is nothing tricky about this or conceptually 
difficult, it is simply a practical matter we need to straighten out before 
proceeding. 

We could use many different schemes to synchronize out 
clocks, such as having a messenger travel between them, but the simplest 
is to use light flashes. Light flashes involve a shorter time delay than any 
other method, and we are guaranteed that light travels at a fixed speed c.

If it takes two seconds for light to go from clock A to clock B,
and the flash is sent out at exactly 4:00, then when the flash gets to clock 
B, it should read 2 seconds past 4:00. If it does, then the two are 
synchronized. 

Of course the surest way of knowing that light takes two 
seconds to go from A to B is to determine using clock A that the reflected 
pulse arrives back at A after four seconds. The above equation expresses 
this way of synchronizing the clocks.

Examples: The Sun 8 light min away, alpha centauri 4 light 
years away. Using a worm as messenger taking 5 min to crawl from A to B
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Consequences of the Principles: 
Simultaneity

v

Bob Alice

A B

A flash bulb creates a pulse of light. It is located 
exactly halfway between markers A and B in Alice’s reference 
frame which is moving with speed v relative to Bob’s frame. She 
sees the flashes of light arrive at the same time at markers A and B, 
and so says that those two events were simultaneous. Note: She 
may have assistants with clocks at A and B. They record the arrival 
time of the flash at their marker and report it to Alice.

Here we are talking about two events – the arrival of a 
light flash at marker A and at marker B. We know the locations of 
the markers and Alice knows their arrival times. In this case the 
arrival times are the same, so the events are simultaneous. 

Bob observes the same two events. How do they 
appear to him?
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Bob’s View

v

Location of A 
when light 
reaches it.

Location 
of B when 

light 
reaches A

Location of source 
when flashes were 

emitted.

Bob sees light emitted midway between markers A 
and B. As the light pulse travels out in both directions, A moves 
towards the source and B moves away. So the distance from source
to A decreases, the distance from source to B increases. So the light 
reaches A before it reaches B according to Bob. 

As observed in Bob’s reference frame, these two 
events are not simultaneous.

Conclusion: Spatially separated events that are 
simultaneous in one frame are not in general simultaneous in 
another reference frame. 

Suppose v = 0. Then if Bob is using synchronized 
clocks, he will report that the arrival of the light at A and B are 
simultaneous events. When relative motion occurs, this is no longer 
the case. 

So thinking carefully about these events forces us to 
give up the intuitive sense we have of the existence of a universal, 
global “now”. Simultaneity is a relative notion – relative to the 
reference frame from which the events are observed.
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Time Dilation mirror

Alice fires a light pulse that goes from
the floor of her reference frame to a 
mirror on the ceiling a distance H away
and is reflected back. 

Two events have occurred: The launching
of the light pulse and its return. The time
interval between them is:

∆t = 2H/c

1 2

We have just seen that two observers in different 
frames can disagree about the time interval between two events, 
such as the arrival of the light pulses at markers A and B.  One
could say it is zero, and the other that it is not zero. Let’s make this 
comparison of time intervals more quantitative. Alice wants to time 
how fast she can run across the tennis court in her reference frame 
and back. She decides to use light to make a clock since she knows 
its speed is always c. She mounts a mirror near the ceiling. She
fires a light pulse as she starts running and finds that it reflects back 
just as she returns to the starting point. She adjusts the height of the 
mirror H to make this happen.

So the time it takes Alice to run across the court and 
back is Dt = 2H/c. She lists this time on her CV as an indication of 
how fast she is on the tennis court.

Bob objects. He says she is not this fast. Here is how 
Bob sees these same two events.
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Bob’s View of Alice’s Clock

v∆tBob

½
 c
∆
t Bo
b

H

Pythagoras:
(1/2c∆tBob)

2 = (1/2v∆tBob)
2 + H2

Bob observes Alice timing her running and decides to 
verify her results. Since Alice’s frame moves with speed v relative 
to Bob’s he sees the light pulse move in a diagonal path from tennis 
court to mirror and along a similar diagonal path back down to the 
court. The light traveled farther from Bob’s point of view, and since 
the speed of light is exactly the same for Bob and Alice, he thinks it 
took her longer to run across the court and back than she does.

We can use Pythagoras to make this difference 
quantitative. Using the light path and tennis court path for the first 
half of the light pulse journey, we have a right triangle as shown 
above. Pythagoras gives us a relation between the lengths of the
sides of the triangle.
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Quantifying the Comparison
From Pythagoras:

(c2 – v2)(1/2∆tBob)
2 = H2

(1 – v2/c2)(∆tBob)
2 = 4H2/c2

(1 – v2/c2)1/2(∆tBob) = 2H/c = ∆tAlice

∆tBob = [1/(1 – v2/c2)1/2](∆tAlice)

∆tFrame with speed v= [1/(1 – v2/c2)1/2](∆tFrame with events at same place)

A few steps of algebra  allow us to solve for the time interval 
observed by Bob in terms of that measured by Alice. We see that since the 
factor (1-v2/c2)1/2 is less than 1, Bob does indeed measure a longer time 
interval than Alice. He thinks she is slower on the tennis court than she 
does.

This difference is not because either have faulty clocks. Indeed
they are using the same clock. Note that it is crucial to this result that the 
speed of light is exactly the same for Bob and Alice. Alice’s relative motion 
does not affect the speed of light as we have seen experimentally, and as 
postulated by Einstein.

The intrinsic difference between the two observers is that the 
two events occurred at the same place according to Alice, while for Bob 
they did not because her frame is moving relative to his. So we can express 
this result making this difference explicit.

The above difference in clock speed is referred to as time 
dilation. It is an intrinsic property of space and time and relative motion. 
The fact that time passes at different rates for different observers seems 
strange to us because our intuition is based on low-speed events. Time 
dilation applies to all kinds of clocks: biological clocks such as aging, rates 
of radioactive decay, the performance of a wristwatch,…
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Example

Suppose v/c = 3/5

Then v2/c2 = 9/25, and 1 – v2/c2 = 16/25

and 1/(1 – v2/c2)1/2 = 5/4

So ∆tBob = 5/4∆tAlice

Here is a numerical example in which we suppose Alice’s speed 
relative to Bob is 3/5 of the speed of light. Then the numerical factor that 
always enters these problems, one divided by the square root of one minus v 
squared over c squared is just 5/4, or 1.25.    
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Qualitative Summary

An observer for whom two events occur
at the same place measures the least
elapsed time between them.

Here is a qualitative summary of our results for time dilation. It 
is useful to keep this in mind just to make sure you have the dilation factor on 
the right side of the equation. 
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Perpendicular Lengths

Is H the same for Alice and Bob?

Do lengths perpendicular to the relative
motion appear different for different
observers?

So far we have assumed that the distance H between the two 
mirrors remains the same for Alice and Bob. We need to check that 
assumption. 
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Perpendicular Length Test

v

Bob Alice

Alice and Bob each have a board mounted perpendicular to 
their relative motion. The two boards were cut to the same length when 
they were at rest relative to each other. Alice puts a red crayon on top of 
her board. The two boards pass very close to each other. 

Let’s try “the moving board appears shorter” as a possibility. 
Then Bob will see Alice’s board as being shorter than his because of its 
motion relative to him, and the red crayon will mark a stripe on it as they 
pass each other. As seen by Alice, Bob’s board appears shorter, and her 
crayon will not mark it. 

Whether or not a mark is made cannot depend on the 
reference frame from which observations are made. Slowing Alice down 
and stopping her relative motion cannot make the red stripe Bob saw on his 
board disappear. So the proposition that “the moving board appears 
shorter” leads to a contradiction and must be wrong.

The same argument rules out “the moving board appears 
longer”. So we are left with “the moving board appears the same length” as 
the only possibility, and our time dilation calculations are shown to be 
valid. 

This applies only to lengths measured perpendicular to the 
relative motion.
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Test of Time Dilation

Muons are unstable particles produced by incident cosmic
rays high in Earth’s atmosphere. They have a mean lifetime
of 2.2*10-6 s when measured at rest in the laboratory.

The atmospheric muons come raining down on us at lower
altitudes, decaying as they come. 

In the early 1960’s the number of muons per hour arriving
at the top of Mount Washington, 2000 m above sea level,
was measured. Then the number arriving at sea level was
measured and found to be about 70% of the number at the
mountain top. 

In order to make an experimental test of time dilation 
we need to find a clock we can observe at rest and also at high 
speed. Once again we find our best example among the elementary 
particles simply because they are often found moving at relativistic 
speeds. 

But what about the clock? Muons do carry a kind of 
statistical clock with them, namely their mean lifetime. When 
measured at rest, their mean lifetime is 2.2 microseconds. 

Event one in this experiment is the measurement of the 
number of muons per hour arriving at the top of Mt. Washington. 
Event two was a subsequent measurement of the number per hour 
arriving at sea level. 

Since the muon creation rate high in the atmosphere 
remains constant, this is a way of measuring how many muons 
decayed on descending 2000 m in the atmosphere.
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Numbers for Muon Experiment
Speed of descending muons = 0.995c (known from energy
of the production reaction high in the atmosphere). This
corresponds to (1 – v2/c2)1/2 = 0.1

Time to travel 2000 m = 2000m/(3*108 m/s) = 6.7*10-6 s

This is 3 times the mean lifetime, so only 5% should 
survive to sea level, while 70% did so.

∆tobserved by us= [1/(1 – v2/c2)1/2](∆tmuon)

∆tmuon= (1 – v2/c2)1/2(∆tobserved by us) = (0.1)(6.7*10-6)
= 0.67*10-6 s

This is 1/3 of a mean lifetime, and corresponds to 70% survival

To make this experiment quantitative, we need to know how 
fast the muons are moving. We know that because we know the energy of 
the reaction that produces them. Then we can calculate how long it takes 
them to go 2000 m. This time is three times their mean lifetime, so only a 
few should survive at sea level. In fact 70% were observed to do so. How 
can this be?

What does time dilation have to say about this situation? A 
muon is at rest in a reference frame moving with it.The two events in the 
experiment, the measurements at 2000m and sea level, occurred at the 
same location in that frame, namely the muon’s position. Therefore the 
time interval between the events measured by us is longer than that 
measured by the muons by the time dilation factor.

Putting in the known speed, we see that the muon’s clock only 
ticked off 0.67 microseconds between 2000 m and sea level. This 
corresponds to a 70% survival rate as observed.

Here we have seen a time dilation factor equal to 10. The 
muons lived 10 times as long as do muons at rest. You could live 10 times 
as long as well, if you could move that fast.
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Length Contraction

Alice leaps across the net after winning another tennis game
and marks the take-off and landing spots on the court. She
is so impressed by her distance that she adds this to her
CV as another athletic achievement.

Once again, Bob disputes her claim, measuring a shorter
distance.

What is a good method for them both to measure this
distance?

Alice and Bob are destined for disputation. Alice 
measures her running broad jump distance across the net on her 
tennis court, and Bob, in his frame, measures a different result. 
How should they both carry out this measurement?
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Both Measure the Jump

Bob’s marker

v

Alice’s chalk 
marks

They agree on the following method for them both to 
measure the distance Alice jumped. Bob places a marker on the 
floor of his reference frame. He then measures how long it takes the 
two chalk marks on Alice’s tennis court to pass his marker. Since 
he knows the speed of Alice’s frame, this gives him the distance, 
denoted by d.

Alice makes the corresponding measurements from 
her frame. For her it is the marker in Bob’s frame that is moving. 
She measures the time it takes for Bob’s marker to pass between 
her chalk marks.
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Length Contraction Results

Bob’s measured length: d = v∆tBob

Alice’s measured length: d0 = v∆tAlice

The two events occur at the same place in Bob’s frame, so
∆tAlice = [1/(1 – v2/c2)1/2](∆tBob)

Combining the above results we have:
d = (1 – v2/c2)1/2d0

Length along the direction of motion is shorter when measured
from moving frame than when measured in its own rest frame. 

Now we can summarize the results of these 
measurements. Bob’s measured length is expressed in terms of the
time interval he measures. Same with Alice. In this case the two
events occur at the same place in Bob’s frame (at the position of his 
marker), so we know how to relate his time interval to Alice’s.

This then gives us the relation between the two 
measured lengths. Bob does measure a smaller jump distance for 
Alice than she does. 

Distance intervals, or lengths, measured along the 
direction of relative motion between two frames are shorter when
measured from the moving frame. An object has its greatest length 
when measured in its own rest frame. 

This result is general and is an intrinsic property of 
space and time and relative motion.



18

MUONS REVISITED
Time dilation provided an explanation for how 70% of the
atmosphetric muons observed at 2000 ft altitude survive 
to sea level. In that explanation the reference frame used
was that of the Earth.

Instead let’s view the situation from the frame of the muons.
Now it is the mountain that moves at 0.995c. It’s height is 
therefore contracted from 2000 to 200m. The time for the 
muons to go 200 m is 0.67*10-6 s, just what we found using
the Earth as a reference frame. The two explanations are
consistent.

Just as there is usually more than one way to solve a 
problem involving Newton’s laws, there is also in special relativity. 

We have seen that muons produced at high altitude 
manage to survive in large numbers to sea level even though their 
lifetime is only 2.2*10-6 s and the journey, measured by us, takes 
longer than that. Time dilation provided a quantitative explanation 
for the high survival rate. They really do live longer when moving 
fast.

Now let’s view the situation from the reference frame 
of the muons. In that frame they are not moving at all, so there is no 
time dilation. Now it is Mount Washington that moves, going 
upward at a speed of 0.995c relative to the muons. So the mountain 
undergoes length contraction. We found before that (1 – v2/c2)1/2 = 
0.1. This is the crucial factor in both time dilation and length
contraction.

So Mount Washington is only 200m tall as seen by the 
muons. And it takes them one-tenth as long to speed past it, giving 
us an alternative explanation for the survival of the muons.
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TWO BASIC RESULTS

Time dilation
∆t(v) = [1/(1 – v2/c2)1/2]∆t(0)

Length Contraction
d(v) = (1 – v2/c2)1/2d(0)

These two basic results are at the core of special 
relativity: Moving clocks run slow, and moving meter sticks are 
shorter along the direction of motion. As we have seen, length 
contraction is a direct result of time dilation, and time dilation 
depends directly on the fact that all observers see light moving at 
the same speed c. 

Earlier we noted that events that are simultaneous for 
one observer may not be for another who is moving relative to the 
first. We noted qualitatively that this must be the case. Now we can 
be quantitative about it.

These two basic results are at the core of special relativity. Moving
clocks run slow and moving meter sticks are shorter along the direction
of motion. As we have seen, length contraction is a direct result of
time dilation. And time dilation depends directly on the fact that all
observers see light moving at the same speed c.

Earlier we saw that events that are simultaneous for one
observer may not be for another who is moving relative to the first.
We noted qualitatively that this must be the case. Now we can be
quantitative about it.


