THE TWO PRINCIPLES

The laws of physics are the same in all unaccelerated
reference frames.

The speed of light is not affected by the motion of
its source.

These are the two principles from which all the
consequences of special relativity can be deduxdeither of these
should be new to you. The first principle was statkearly by
Galileo. He wrote that if you are in a closed rooma ship, and
have brought with you anything you like to makeeglations of,
including fish, insects, etc, that nothing will éaglace in the room
to indicate whether or not the ship is moving.

The second principle is one we have seen good
experimental support for. We saw that gamma rayitenhby
pions moving at 0.99c, travel at the same spedidlasemitted by
a stationary source. One could argue that the slggonciple is
implied by the first since Maxwell’'s equations st#tat the speed
of light is c. Stating both principles makes theastancy of c for all
observers more explicit.




SOME SPEEDS

Example Speed vic

Earth about Sun 30km/s 0.0001
Sound in air 343 m/s 0.0000011
90 mph fastball 40 m/s 0.00000013
10 MeV electron 300000 km/s 0.99

c=1ft/ns

Before pursuing the consequences of the two priesipet us
look briefly at some examples of speeds of objeetsare familiar with.
Everyday objects have speed that are very smalpaozd with the speed
of light. In order to see clear examples of theseguences of the
principles of relativity, we will need to imaginéjects moving at nearly
the speed of light, or as is commonly said, atinastic speeds.

Relativistic speeds are common for electrons otopi®
emerging from a particle accelerator. We need ttetstand special
relativity in order to analyze the collisions oé#e particles with their
targets.

To discuss the implications of the principles, wi# meed to
imagine whole reference frames moving at relaiwispeeds. Einstein
called these imaginings “thought experiments”.

Think of our imaginary reference frame as a hugarig
enough that it takes light an appreciable timeadrgm one side of it to
another. There are meter sticks or tape measuadslale to determine
positions in the room, and there are clocks wherexeneed them to time
events that occur. Our reference frame is unactel@r but likely will be
moving relative to other reference frames withtreistic speeds.




Synchronizing Clocks in our
Reference Frame

Place clocks in their needed locations (probahlyréan
each other), and use light signals to synchrotiemt

Clock A sends a light pulse to clock B where itléetected
and reflected back. The two will be synchronizedtien
the pulse reaches it, clock B reads:

tB(receive): tA(sent)+ 1/2(';A(return)_ tA(sent)

We will be carrying out various thought experimendgh in
our reference frame and between two reference Bameelative motion
with each other. To get started we need to know teosynchronize the
clocks in our frame. There is nothing tricky abthus or conceptually
difficult, it is simply a practical matter we nesastraighten out before
proceeding.

We could use many different schemes to synchramite
clocks, such as having a messenger travel betvineem, tut the simplest
is to use light flashes. Light flashes involve arsér time delay than any
other method, and we are guaranteed that light¢lsaat a fixed speed c.

If it takes two seconds for light to go from clo&ko clock B,
and the flash is sent out at exactly 4:00, thennithe flash gets to clock
B, it should read 2 seconds past 4:00. If it dtde) the two are
synchronized.

Of course the surest way of knowing that light takeo
seconds to go from A to B is to determine usingkla that the reflected
pulse arrives back at A after four seconds. The/aleguation expresses
this way of synchronizing the clocks.

Examples: The Sun 8 light min away, alpha centélight
years away. Using a worm as messenger taking Saxdrawl from A to B




Consequences of the Principles:
Simultaneity

A flash bulb creates a pulse of light. It is lochte
exactly halfway between markers A and B in Aliceference
frame which is moving with speed v relative to Bolrame. She
sees the flashes of light arrive at the same tinmeaakers A and B,
and so says that those two events were simultanBlags: She
may have assistants with clocks at A and B. Thegnethe arrival
time of the flash at their marker and report iAtce.

Here we are talking about two eventihe arrival of a
light flash at marker A and at marker B. We know kbcations of
the markers and Alice knows their arrival timestHis case the
arrival times are the same, so the events are winedus.

Bob observes the same two events. How do they
appear to him?




Bob’s View

Location of A Location

: Location of source
when light of B when
Ty when flashes were

emitted.

Bob sees light emitted midway between markers A
and B. As the light pulse travels out in both dil@ts, A moves
towards the source and B moves away. So the desfamm source
to A decreases, the distance from source to Base® So the light
reaches A before it reaches B according to Bob.

As observed in Bob’s reference frame, these two
events are not simultaneous.

Conclusion: Spatially separated events that are
simultaneous in one frame are not in general sanelus in
another reference frame.

Suppose v = 0. Then if Bob is using synchronized
clocks, he will report that the arrival of the light A and B are
simultaneous events. When relative motion occhis,i$ no longer
the case.

So thinking carefully about these events forcetus
give up the intuitive sense we have of the existerfa universal,
global “now”. Simultaneity is a relative notiefrelative to the
reference frame from which the events are observed.




Time Dilation i

[

Alice fires a light pulse that goes from
the floor of her reference frame to a
mirror on the ceiling a distance H away
and is reflected back.

Two events have occurred: The launching
of the light pulse and its return. The time
interval between them is:

At = 2H/c

We have just seen that two observers in different
frames can disagree about the time interval betwserevents,
such as the arrival of the light pulses at markeas\d B. One
could say it is zero, and the other that it iszeyD. Let’s make this
comparison of time intervals more quantitative cAliants to time
how fast she can run across the tennis court imdference frame
and back. She decides to use light to make a dimde she knows
its speed is always c. She mounts a mirror neacehimg. She
fires a light pulse as she starts running and fthdsit reflects back
just as she returns to the starting point. Sheséslfine height of the
mirror H to make this happen.

So the time it takes Alice to run across the cand
back is Dt = 2H/c. She lists this time on her C\aasndication of
how fast she is on the tennis court.

Bob objects. He says she is not this fast. Hehews
Bob sees these same two events.




Bob’s View of Alice’s Clock

VAL,

Pythagoras:
(1/2AAts,p)? = (1/2ALg )% + H?

Bob observes Alice timing her running and deciaes t
verify her results. Since Alice’s frame moves wsffeed v relative
to Bob’s he sees the light pulse move in a diagpatl from tennis
court to mirror and along a similar diagonal patickodown to the
court. The light traveled farther from Bob’s poaitview, and since
the speed of light is exactly the same for Bob Alick, he thinks it
took her longer to run across the court and baak #he does.

We can use Pythagoras to make this difference
guantitative. Using the light path and tennis cqath for the first
half of the light pulse journey, we have a rigldnigle as shown
above. Pythagoras gives us a relation betweeretigghs of the
sides of the triangle.




Quantifying the Comparison

From Pythagoras:
(¢ —Vv?)(1/2Atg)? = H?

(1 —Vv?/c?)(Atg,,)? = 4HP/C?
(1 -v3c)VAt,,,) = 2H/c =At

Alice

AtBob — [1/(1 - VZ/CZ)UZ](AtAIice)

AtFrame with speed 2 [1/(1 - V2/02)1/2] (AtFrame with events at same plz

A few steps of algebra allow us to solve for tingetinterval
observed by Bob in terms of that measured by Ali¢e.see that since the
factor (:v?/c?)12is less than 1, Bob does indeed measure a longer ti
interval than Alice. He thinks she is slower on tdenis court than she
does.

This difference is not because either have fautiglks. Indeed
they are using the same clock. Note that it isiatuo this result that the
speed of light is exactly the same for Bob and &lilice’s relative motion
does not affect the speed of light as we have sgparimentally, and as
postulated by Einstein.

The intrinsic difference between the two obsen®that the
two events occurred at the same place accordiAgide, while for Bob
they did not because her frame is moving relativieis. So we can express
this result making this difference explicit.

The above difference in clock speed is referreastome
dilation. It is an intrinsic property of space and time agldtive motion.
The fact that time passes at different rates fiberdint observers seems
strange to us because our intuition is based orsjo¥ed events. Time
dilation applies to all kinds of clocks: biologiadbcks such as aging, rates
of radioactive decay, the performance of a wristivat.




Example

Suppose v/ic = 3/5
Then \/c?2 = 9/25, and 1 v2/c?2 = 16/25

and 1/(1- v3/c?)V2 = 5/4

SoAtg,, = 5/4At e

Here is a numerical example in which we suppose Alice’s speed
relative to Bob is 3/5 of the speed of light. Then the numerical factor that
always enters these problems, one divided by the square root of one minus v
squared over c squared is just 5/4, or 1.25.




Qualitative Summary

An observer for whom two events occur
at the same place measures the least
elapsed time between them.

Here is a qualitative summary of our results for time dilation. It
is useful to keep this in mind just to make sure you have the dilation factor on
the right side of the equation.
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Perpendicular Lengths

Is H the same for Alice and Bob?

Do lengths perpendicular to the relative
motion appear different for different
observers?

So far we have assumed that the distance H between the two
mirrors remains the same for Alice and Bob. We need to check that
assumption.
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Perpendicular Length Test

Alice and Bob each have a board mounted perperaditul
their relative motion. The two boards were cut® $ame length when
they were at rest relative to each other. Alicesauted crayon on top of
her board. The two boards pass very close to etheln.o

Let’s try “the moving board appears shorter” amagmility.
Then Bob will see Alice’s board as being shortanthis because of its
motion relative to him, and the red crayon will knarstripe on it as they
pass each other. As seen by Alice, Bob’s boardapshorter, and her
crayon will not mark it.

Whether or not a mark is made cannot depend on the
reference frame from which observations are malsvigg Alice down
and stopping her relative motion cannot make tdestepe Bob saw on his
board disappear. So the proposition that “the ngpwboard appears
shorter” leads to a contradiction and must be wrong

The same argument rules out “the moving board appea
longer”. So we are left with “the moving board aprethe same length” as
the only possibility, and our time dilation calctidas are shown to be
valid.

This applies only to lengths measured perpendi¢aldre
relative motion.
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Test of Time Dilation

Muons are unstable particles produced by incident cosmic
rays high in Earth’s atmosphere. They have a mean lifetime
of 2.2*10% s when measured at rest in the laboratory.

The atmospheric muons come raining down on us at lower
altitudes, decaying as they come.

In the early 1960’s the number of muons per hour arriving
at the top of Mount Washington, 2000 m above sea level,
was measured. Then the number arriving at sea level was
measured and found to be about 70% of the number at the
mountain top.

In order to make an experimental test of time ahitat
we need to find a clock we can observe at restgsulat high
speed. Once again we find our best example amanglé&mentary
particles simply because they are often found nguairrelativistic
speeds.

But what about the clock? Muons do carry a kind of
statistical clock with them, namely their meantlife2. When
measured at rest, their mean lifetime is 2.2 mexrosds.

Event one in this experiment is the measuremetiteof
number of muons per hour arriving at the top of Wiashington.
Event two was a subsequent measurement of the mypabaour
arriving at sea level.

Since the muon creation rate high in the atmosphere
remains constant, this is a way of measuring howynmauons
decayed on descending 2000 m in the atmosphere.
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Numbers for Muon Experiment

Speed of descending muons = 0.995c¢ (known from gne
of the production reaction high in the atmosphera)s
corresponds to (& v3/c?)12=0.1

Time to travel 2000 m = 2000m/(3*a.n/s) = 6.7*1F s

This is 3 times the mean lifetime, so only 5% sHoul
survive to sea level, while 70% did so.

Atobserved by us [1/(1 - VZ/CZ)llz](Atmuor)
Atmuon = (1 - VZ/CZ)l/Z(Atobserved by L)S: (0-1) (6-7*1@)
=0.67*106s
This is 1/3 of a mean lifetime, and corresponds(% surviva

To make this experiment quantitative, we need mkhow
fast the muons are moving. We know that becauskne® the energy of
the reaction that produces them. Then we can edtehlw long it takes
them to go 2000 m. This time is three times theamlifetime, so only a
few should survive at sea level. In fact 70% weysepved to do so. How
can this be?

What does time dilation have to say about thisasibm? A
muon is at rest in a reference frame moving withhie. two events in the
experiment, the measurements at 2000m and sead¢ecelred at the
same location in that frame, namely the muon’stymrsi Therefore the
time interval between the events measured by losger than that
measured by the muons by the time dilation factor.

Putting in the known speed, we see that the mudatk only
ticked off 0.67 microseconds between 2000 m andeseh This
corresponds to a 70% survival rate as observed.

Here we have seen a time dilation factor equabtorhe
muons lived 10 times as long as do muons at resi.céuld live 10 times
as long as well, if you could move that fast.
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Length Contraction

Alice leaps across the net after winning anothenigegame
and marks the takeff and landing spots on the court. She

IS so impressed by her distance that she addsthisr
CV as another athletic achievement.

Once again, Bob disputes her claim, measuring desho
distance.

What is a good method for them both to measure t
distance?

Alice and Bob are destined for disputation. Alice
measures her running broad jump distance acrossethen her
tennis court, and Bob, in his frame, measuresfardift result.
How should they both carry out this measurement?
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Both Measure the Jump

Alice’s chalk
marks

/

They agree on the following method for them both to
measure the distance Alice jumped. Bob places &eman the
floor of his reference frame. He then measures loowy it takes the
two chalk marks on Alice’s tennis court to passrhagker. Since
he knows the speed of Alice’s frame, this gives thmdistance,
denoted by d.

Alice makes the corresponding measurements from
her frame. For her it is the marker in Bob’s fratim&t is moving.
She measures the time it takes for Bob’s markpags between
her chalk marks.
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Length Contraction Results

Bob’s measured length: d Atg,

Alice’s measured lengthye VAt,ce

The two events occur at the same place in Bob’s frame, s
AtAIice = [1/(1 - VZ/CZ)l/Z](AtBoh)

Combining the above results we have:
d = (1 - w/cA)Vd,

Length along the direction of motion is shorter when measu
from moving frame than when measured in its own rest fra

Now we can summarize the results of these
measurements. Bob’s measured length is expressedns of the
time interval he measures. Same with Alice. In daise the two
events occur at the same place in Bob’s framéhéaposition of his
marker), so we know how to relate his time intetweallice’s.

This then gives us the relation between the two
measured lengths. Bob does measure a smaller jistamce for
Alice than she does.

Distance intervals, or lengths, measured along the
direction of relative motion between two frames stierter when
measured from the moving frame. An object hasrgsigst length
when measured in its own rest frame.

This result is general and is an intrinsic propefty
space and time and relative motion.
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MUONS REVISITED

Time dilation provided an explanation for how 70%&he
atmosphetric muons observed at 2000 ft altitude garvi
to sea level. In that explanation the referencen&raised
was that of the Earth.

Instead let’s view the situation from the framele# muons
Now it is the mountain that moves at 0.995c. Iégght is
therefore contracted from 2000 to 200m. The tinetie
muons to go 200 m is 0.67*$®, just what we found usin
the Earth as a reference frame. The two explaraton
consistent.

Just as there is usually more than one way to solve
problem involving Newton’s laws, there is also pesial relativity.

We have seen that muons produced at high altitude
manage to survive in large numbers to sea level évaugh their
lifetime is only 2.2*1¢ s and the journey, measured by us, takes
longer than that. Time dilation provided a quatitr&explanation
for the high survival rate. They really do live g@r when moving
fast.

Now let’s view the situation from the referencenfia
of the muons. In that frame they are not movingllasso there is no
time dilation. Now it is Mount Washington that maygoing
upward at a speed of 0.995c relative to the musathe mountain
undergoes length contraction. We found before (thatv?/c?)1/2 =
0.1. This is the crucial factor in both time ditatiand length
contraction.

So Mount Washington is only 200m tall as seen lay th
muons. And it takes them oitenth as long to speed past it, giving
us an alternative explanation for the survivalhg mmuons
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TWO BASIC RESULTS

Time dilation
At(v) = [1/(1— v@/c?) V2| At(0)

Length Contraction
d(v) = (1-v3c?)¥2d(0)

These two basic results are at the core of special
relqthabe ey ingsriaeks itdrkfio tAedore\ong frREERIOKS . avving
shertrikalomg shenddedtinoahgeiier Sscke Heaveriingtithe direction
comir asdivons/Asdire¢ides weeh fiagiHadinmnesdten didaiioresult of
depavslgititerilyer the éagildfiahalepsriy elisiglh reviastahat all
theppg@@&Resskdight moving at the same speed c.

EaHil gy aaythaatoeamsibabasesiinnitindgodsre
on@RIRRIENAAN D EforRpiBeTeN I ésigmanadma ch@ dirst.
firsYVQvROteteaLGlisaiixele Naah At ith 19 Wt Sepb @RdEBN Ve warcBR
be @RIMIFRINR bt .
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