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TWO BASIC RESULTS

Time dilation
∆t(v) = [1/(1 – v2/c2)1/2]∆t(0)

Length Contraction
d(v) = (1 – v2/c2)1/2d(0)

These two basic results are at the core of special 
relativity: Moving clocks run slow, and moving meter sticks are 
shorter along the direction of motion. As we have seen, length 
contraction is a direct result of time dilation, and time dilation 
depends directly on the fact that all observers see light moving at 
the same speed c. 

Earlier we noted that events that are simultaneous for 
one observer may not be for another who is moving relative to the 
first. We noted qualitatively that this must be the case. Now we can 
be quantitative about it. When two clocks are synchronized in one 
frame, by how much do they differ in another that is moving? This 
is a very important and useful result.
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Consequences of the Principles: 
Simultaneity

v

Bob Alice

Cb Cf

Here is the flash bulb halfway between markers A and 
B in Alice’s frame. To be quantitative about the time difference
Bob will see, we place clocks Cb (the back clock according to Bob)
and Cf (the front clock) at the two markers with photocells that will 
start the clocks when the light pulses arrive. For Alice, the two 
flashes arrive simultaneously, so the two clocks are synchronized. 

We know that Bob observes the light pulse to arrive at 
Cb first. The question is, by how much? That is, by how much are 
the two clocks out of synchronization according to Bob?
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HOW MUCH DIFFERENCE?

vtb ctb

L
vtb + ctb = 1/2L(1 – v2/c2)1/2

tb = [1/(c + v)]1/2L(1 – v2/c2)1/2

tf = [1/(c – v)]1/2L(1 – v2/c2)1/2

Here is a sketch of the light pulse as it is on its way 
toward the back clock, Cb. As the pulse travels back towards the 
clock, it moves forward towards the pulse. The time required for
the pulse to get to the back clock is tb.Since Bob is making these 
observations, we must use the contracted length L(1-v2/c2) for the 
distance between the clocks. Similarly the time for the pulse going 
forward to get to the front marker that is moving forward, is tf. So 
now we can evaluate the difference between these two times, which 
is the amount by which the two clocks are out of synchronization
according to Bob.
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tf - tb

tf – tb = (vL/c2)[1/(1 – v2/c2)1/2]

This is the time difference between the back and front 
clocks as seen by Bob. He knows however that Alice’s 
clocks run slow by the factor (1 – v2/c2)1/2 so he 
concludes that her two clocks will differ by vL/c2.

tf – tb = [1/(c-v) – 1/(c+v)]1/2L(1-v2/c2)
= v/c2[1/(1-v2/c2)]L(1-v2/c2)1/2

Bob sees the back clock start before the front clock by 
this time interval. Knowing his special relativity he is aware that 
Alice’s clocks run slow. So he concludes that her two clocks will 
differ by vL/c2. That is, the back clock will read this amount when 
the front clock starts.

Note that if L = 0, that is if the two clocks are together, 
Bob and Alice will both say they are synchronized. There must be a 
distance between the clocks as well as relative motion to produce a 
disagreement about synchronization. 
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EXAMPLE

If v/c = 3/5, and L = 109 m, then
vL/c2 = (v/c)(L/c) = 3/5(109/3*108) = (3/5)(10/3) 

= 2 seconds. 

For L = 3m,  vL/c2 = (3/5)(3/3*108) = (3/5)10 ns
= 6 ns.

Here are two numerical examples of the 
synchronization results we have just obtained. The speed v/c = 3/5 
is convenient because it makes the arithmetic easy, involving 
integers. Using a large distance of a billion meters ( a million
kilometers, or 625,000 miles) we find a change in synchronization 
of 2 seconds.

Using a more modest distance of 3 m and the same 
speed, we find a change in synchronization of 6 ns. How important 
these changes are depends on the circumstances. We will see an 
example right away where the change is important for explanatory
purposes, regardless of whether it is large or small.
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RELATIVITY TOOLKIT

Time Dilation:
∆t(v) = [1/(1 – v2/c2)1/2]∆t(0)

Length Contraction:
d(v) = (1 – v2/c2)1/2d(0)

Change in Synchronization:
∆t = Lv/c2

Light time of flight:
t = d/c

We have now studied all the major features of special 
relativity needed to solve most problems. Here are four major ideas 
that are all you need to handle various problems, quandries, 
paradoxes. 

When objects move with speeds near the speed of  
light, new things happen that do not correspond to our common 
sense, or intuition. Einstein once said that common sense is that 
layer of prejudice that we absorb as children. You can use it to
check the results of most Newton’s laws problems. But it doesn’t
work here because we developed our intuition about movement in 
the world entirely at low speeds. So you must think carefully as you 
apply these four ideas.



7

Reconciling Alice and Bob

How can Alice and Bob each see the other’s 
clocks to be running slow and unsynchronized,
and agree on anything? 

Suppose they both look at the same clock at
the same time from the same place. Will 
they agree on what time it shows? Let us 
see how.

At this point we have Alice and Bob disagreeing on 
nearly everything they both observe. But if they both know about
the relativity toolkit just shown, they should be able to sort things 
out so they understand each other. Let’s look again at the two clock 
problem, only this time let’s let Bob have the two clocks, since of 
course the two frames are equally valid, and we don’t want to 
imply otherwise.
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Reconciling Alice and Bob

v = 0.6 ft/ns = 3/5c

C1 C2

C’

6*109 ft

Bob has two clocks, C1 and C2 in his reference frame. 
They are located 6*109 ft which is 6 light seconds apart. Alice is 
moving with speed 0.6 ft/ns = 3/5c and has clock C’ in her 
reference frame. C’ and C1 both start at the moment C’ passes C1. 

Bob’s two clocks are synchronized and he knows it 
will take Alice 10 s to get to C2 so that is what his clock reads as 
Alice goes past. What does Alice’s clock read as she passes C2?    
(1 – v2/c2)1/2 = (1 – (3/5)2)1/2 = 4/5 = 0.8. So her clock will read 8 s 
as she passes C2. Since Alice and Bob are at the same location as 
their two clocks, they will agree that his clock reads 10s and hers 
reads 8s. How then can Alice claim that Bob’s clocks run slow?

To Alice, Bob’s clocks are not synchronized. C1 is 
behind C2 by Lv/c2 = (6s)(0.6) = 3.6s. So she concludes that since 
C2 reads 10s, at that instant C1 must read 6.4s. Her clock reads 8s, 
so Bob’s clocks are running slow by the factor 6.4/8 = 0.8 just as 
they should. The change in synchronization allows them both to see 
the other’s clocks as running slow. 
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Observations

As Alice and her clock pass C2, it reads 10s. Her clock
reads 10s*(1 – v2/c2)1/2 = 8s. Since they are at the same
place, Alice and Bob agree on these two times.

Then how can Alice argue that Bob’s clocks run slow?
To Alice, Bob’s clocks are not synchronized. C1 is 
behind C2 by Lv/c2 = (L/c)(v/c) = 6*0.6 = 3.6s.

Alice concludes that as she passes C2, C1 must read
6.4s, and that Bob’s clocks are running slow by the
factor 6.4/8 = 0.8

Bob’s two clocks are synchronized according to him 
and he knows it will take Alice 10 s to get to C2 so that is what his 
clock reads as Alice goes past. What does Alice’s clock read as she 
passes C2?    (1 – v2/c2)1/2 = (1 – (3/5)2)1/2 = 4/5 = 0.8. So her clock 
will read 8 s as she passes C2. Since Alice and Bob are at the same 
location as their two clocks, they will agree that his clock reads 10s 
and hers reads 8s. How then can Alice claim that Bob’s clocks run 
slow?

To Alice, Bob’s clocks are not synchronized. C1 is the 
back clock for her, and so C2 is ahead of it. C1 is behind C2 by Lv/c2

= (6s)(0.6) = 3.6s. So she concludes that since C2 reads 10s, at that 
instant C1 must read 6.4s. Her clock reads 8s, so Bob’s clocks are 
running slow by the factor 6.4/8 = 0.8 just as they should. The 
change in synchronization allows them both to see the other’s 
clocks as running slow. 
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They Photograph C1

To check all this, they both digitally photograph C1

through telescopes. Bob’s picture shows C1 reading 
4s as it must. His clocks are synchronized and they
are 6 light seconds apart.

Alice’s picture must show the same. The two pictures
were taken at the same time from the same place. How
can she reconcile her picture showing C1 reading 4s 
with her assertion that at the instant she took the
picture it read 6.4s?

So far Alice and Bob are uncharacteristically in 
agreement. They decide to push their luck and take digital pictures 
of C1 just at the instant C’ passes C2 through powerful telescopes (6 
billion feet is 1.1 million miles). Bob knows his picture will show 
C1 reading 4s since his clocks are synchronized, C2 reads 10s, and 
they are 6 light seconds apart.

What does Alice’s picture show? Since the two 
pictures were taken at the same time from the same place, and light 
travels just as fast for her as for him, they must show the same
thing, so her picture also shows C1 reading 4s. How can she 
reconcile this with her assertion that C1 read 6.4s at the instant she 
took the picture?

Fortunately she knows about special relativity.



11

Alice’s Explanation

1. Distance to C1 = 4/5*6*109 ft. = 24/5*109 ft

2. When did the light entering her camera leave C1? 
vt ct

vt + ct = 1.6*109t = 24/5*109

t = 3s ago her time

3. Time dilation: 3s*4/5 = 2.4 s ago clock time.
So the clock read 4 + 2.4  = 6.4s when she took 
the picture.

First Alice calculates her distance to C1. This is shorter 
by the length contraction factor of 4/5 than Bob measures it.

Then she finds how long ago the light that entered her 
camera left C1. It did not have to go the full contracted distance 
calculated above since it is moving away from her (and so is the
back clock for her). (Here we are using c = 1 ft/ns = 109 ft/s.) She 
finds it left the clock 3 seconds ago her time. 

Now she must evaluate how many seconds ticked off 
the moving clock during this 3 second interval in her frame. By 
time dilation this is 4/5 of 3 seconds, or 2.4 seconds.

So she has found that clock 1 must have read 4 + 2.4 = 
6.4 seconds at the instant she took the picture while passing C2. 
This is just what she concluded using the change in synchronization 
between the two frames. We have a completely consistent picture.

At first it seems impossible for Alice and Bob to each 
maintain that the other’s clocks run slow compared with theirs. But 
by bringing in the other necessary consequences of relativity shown 
in the relativity toolkit, the whole picture becomes completely 
consistent. If Alice and Bob think carefully, they realize they 
actually agree with each other!
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E = mc2

v

Bob Alice

Atom at rest in 
Alice’s Frame

Here are Alice and Bob in their reference frames as 
usual. In addition we have placed an atom at rest in Alice’s frame. 
The atom emits two photons (this means the atom was in an excited 
state – its electrons were not in equilibrium when we put it there. 
Atoms in equilibrium do not emit light). The two photons travel 
away from the atom in opposite directions perpendicular to the 
relative velocity v.

This means the energy of the atom has decreased by an 
amount 2hf, since as we have seen the energy of a photon is equal 
to hf. So energy will be conserved overall if the energy of the atom 
decreases by the amount of the energy of the two photons.

Since there are no external forces acting on the system, 
we also know that momentum will be conserved.

We have seen that we can sometimes learn important 
and surprising things just by carefully describing what two 
observers in relative motion see as an event occurs. How do Bob 
and Alice see the emission of the photons by the atom?



13

Atom emits two photons

Alice’s viewBob’s view

v

c

Alice sees the two photons move away from the atom in 
opposite directions. The atom was stationary initially, and after emitting 
the photons it remains stationary. Each photon carries momentum hf/c, 
as we have seen from the Compton scattering experiment, and since they 
move away in opposite directions, the atom picks up no net momentum 
from the photons. So energy and momentum are both conserved in an 
obvious way for Alice.

Bob sees the atom moving with speed v initially. After the 
photons are emitted, since the atom remains stationary in Alice’s frame, 
it continues with the same speed v. But Bob sees the two photons
moving away from the atom with a forward component to their speed as 
well as equal and opposite vertical components. 

Each photon has a momentum with a forward component 
equal to (hf/c)(v/c). Since the atom moves with the same speed v as 
before, how can we arrange to have momentum conserved from Bob’s
point of view?

Einstein was so convinced that momentum must be 
conserved that he was willing to say that the mass of the atom must have 
changed.
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Energy and Momentum of Atom

∆EAtom = -2hf

∆(mv)Atom = -2(hf/c)(v/c) = ∆EAtom(v/c2)

Since v of atom remains constant, ∆(mv)Atom = v∆mAtom

So  ∆EAtom = ∆mAtomc2

This is true for any agent that changes
the energy of an atom.

In general,      E = mc2

When the atom emitted the two photons, its energy decreased 
by 2hf. For momentum to be conserved in Bob’s frame, the atom’s 
momentum must have decreased since now the photons have forward 
momentum. But since the velocity of the atom remained the same, the only 
way for its momentum to decrease is for the mass to do so.

In this example it is photons that changed the energy of the 
atom. The result is true in general however. Any external agent that changes 
the energy of an atom, also changes its mass, or inertia by the amount 
shown above. Since a chair is made of atoms, the same result applies to 
chairs, rocks, etc. 

For example if you pick up a 1 kg mass from the floor and put 
it on a table, you have increased its mass by: ∆m = mgh/c2 = 10-16 kg. For 
nuclear reactions like the fusion reactions that power the sun, the change in 
mass is about one part per thousand of the mass of the protons involved. For 
typical chemical reactions, it is around one part per billion. 

This gives us an entirely new way of viewing mass. Mass is 
energy. Newton thought of mass as either inertia or gravitational mass. 
Einstein thought of it as energy. He regarded this as his most important 
result. 
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EINSTEIN’S BOX

∆x

Isolated box has
mass M, length L

The left end emits a burst of photons with energy E, momentum
E/c. By conservation of momentum, this gives the box a velocity.
Mv = -E/c. While the photons travel to the other end, the box
drifts a distance ∆x = v∆t = (-E/Mc)(L/c) = -EL/Mc2

Einstein argued that the center of mass must remain stationary
since no external forces have acted. This can only occur if the
photons have an equivalent mass m given by:   mL + M∆x = 0
Solving for m: m = E/c2 or E = mc2

This is a simple argument that Einstein used in 1906 to show that 
energy and mass are the same thing. A box is floating in space far from other 
objects. One end emits a burst of radiant energy (photons) having energy E. We 
know that this burst also has momentum E/c. Then while the photons travel 
towards the other end of the box, since momentum is conserved, the box must be 
drifting with velocity v given above.

When the burst gets to the other end of the box it stops drifting. 
Then the box has moved over an amount ∆x. Einstein then argued that the center 
of mass could not have moved since no external forces have acted. Since the box 
has moved over the only way its CM could remain stationary is if the photons, 
moving in the opposite direction, have inertia too. The required amount is E/c2.

Before Einstein two important conservation laws in physics were:
Conservation of energy, as we have seen, and conservation of mass. What 
Einstein did with this relation is unite them. Now there is simply the conservation 
of mass/energy.

Once the radiant energy reaches the other end of the box it is 
absorbed and becomes heat energy. Heat energy can be used to run an engine to 
produce nearly any other kind of energy. So this inertia of energy is completely 
general. A moving golf ball has more mass than a stationary one.
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Fusion Reaction in the Sun
The sun is fueled by nuclear fusion reactions.
One of them is:

p + D      He3 + γ

Here p = proton, D = deuterium nucleus (1 proton 
and 1 neutron) He3 is a Helium 3 nucleus 
(2 protons, 1 neutron), and γ is a gamma
ray (high energy photon).

This is an exothermic reaction (gives off 
energy in the form of the gamma ray).

As an example of Einstein’s famous equation let’s 
look at a nuclear reaction that is essential for life on earth. The sun 
is powered by nuclear fusion reactions in which light nuclei come 
together to form heavier ones. A series of reactions are involved, 
one of which is shown above. 

This reaction gives off energy in the form of the 
gamma ray shown on the right side of the equation. The reaction 
takes place deep in the sun where the temperature is around 10 
million degrees Celsius. The gamma rays are absorbed. Their 
energy finally escapes the sun in the form of radiant energy emitted 
by the surface of the sun. This is just the heat and light we need for 
life. 

Let’s now look at the energy budget for this reaction.
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Energy Budget for Reaction
The masses of the constituent particles are:

proton: 1.6724*10-27 kg
deuteron: 3.3432
p + D: 5.0156
He3: 5.0058
Difference: 0.0098

The proton and deuteron have more mass
than the He3 nucleus.

The difference is an energy of  ∆mc2 =
(9.8*10-30kg)(9*1016 m2/s2)    =  8.8*10-13J 

To find out how much energy this reaction releases all 
we need to know is the masses of the particles on both sides of the 
equation. The proton plus deuteron, the reacting particles, have
more mass than the He3 nucleus that is formed. The difference, 
when multiplied by c2 is the energy released by the reaction.

This is the energy of the gamma ray produced by the 
reaction. 

The sun loses about 4.6 million tons per second due to 
reactions such as this one. This is only about one part in 1013 of its 
mass per year. It is expected to live another 10 billion years.

The domestic energy used per day in Charlottesville, 
when divided by c2, is about one tenth of a gram. 

In the above fusion reaction, about one part in 500 of 
the initial mass is changed to available energy. For a typical 
chemical reaction, about one part in one billion of the initial mass is 
changed to available energy.


