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RELATIVITY TOOLKIT

Time Dilation:
∆t(v) = [1/(1 – v2/c2)1/2]∆t(0)

Length Contraction:
d(v) = (1 – v2/c2)1/2d(0)

Change in Synchronization:
∆t = Lv/c2

Light time of flight:
t = d/c

We have now studied all the major features of special 
relativity needed to solve most problems. Here are four major ideas 
that are all you need to handle various problems, quandries, 
paradoxes. 

When objects move with speeds near the speed of  
light, new things happen that do not correspond to our common 
sense, or intuition. Einstein once said that common sense is that 
layer of prejudice that we absorb as children. You can use it to
check the results of most Newton’s laws problems. But it doesn’t
work here because we developed our intuition about movement in 
the world entirely at low speeds. So you must think carefully as you 
apply these four ideas.
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RELATIVE SPEED

vWE

vMW

vME = vMW + vWE

Speeds are always measured with respect to an origin of 
coordinates, or a reference frame. Sometimes that reference frame might 
itself be moving with respect to something else. We saw an example of this 
in the Ptolemaic model of the universe – the reference frame for that model 
is the Earth which is itself moving with respect to the Sun.

How do we take a moving reference frame into account? The 
Galilean method is illustrated here. A wagon moves along the ground with 
a speed vWE, the speed of the wagon with respect to the Earth. A man 
walks on the wagon with a speed vMW, the speed of the man with respect to 
the wagon. What is the man’s speed with respect to the Earth? It is simply 
the sum of the above two speeds. 

Underlying this method of combining speeds are the 
assumptions that time and space are absolute. That is, the clocks on the 
wagon run at the same rate as those on the ground, and the length of a 
meter is the same for both. Clearly we need to rethink this question in the 
light of the consequences of special relativity. We already know that 
nothing is added to the speed of light when the light is emitted from a 
moving source. A general answer to this question must include this result.
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ADDING VELOCITIES
A train, length L, moves with speed v relative to the 
ground, while a walker on the train walks forward 
with speed u relative to the train. What is the speed 
of the walker relative to the ground?

v

uC1 C2

Clocks C1 and C2 are placed at the rear and 
front  of the train respectively, and are synchronized 
on the train.

C’

A ground observer has clock C’.  C1 and C’ both 
start when they are opposite each other.

Here we have a train moving to the right 
with speed v relative to the ground. A walker on the train moves
with speed u relative to the train. Allowing for the possibility that 
both speeds are relativistic, what is the speed of the walker relative 
to the ground?

We will need to measure both times and distances, so 
we put synchronized (on the train) clocks at the rear and front of the 
train. A ground observer’s clock and C1 start when they are 
opposite each other which is when the walker begins his walk.

So C1 and C’ both read 0 at the start of the walk.
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ADDING VELOCITIES II

C1 = C’ = 0 at the start of the walk.

At the end of the walk, C2 = L/u according to
walker. Ground observer agrees. 

At that instant, the ground observer says C1 = 
L/u + Lv/c2 due to the synchronization change. 
This is the duration of the walk measured by train 
clocks. So the ground observer says the duration 
measured on his clock was:

tw = [L/u + Lv/c2]/(1 – v2/c2)1/2

The ground observer’s clock and the rear train clock 
both start at zero when the walk begins. When the walker arrives at 
the front of the train, he will see C2 reading L/u. The ground 
observer agrees since two simultaneous events at the same place 
are simultaneous for all observers. 

At that instant however, the ground observer will say 
that C1 = L/u + Lv/c2. The second term is just the synchronization 
change that occurs when both relative velocity and spatial 
separation along the direction of motion are present. This is the 
duration of the walk according to the ground observer, but 
measured by train clocks. 

Since the ground observer knows the train clocks run 
slow, he corrects for that and so says the duration measured by his 
clock is as shown above.
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ADDING VELOCITIES III

How far does the walker go as seen by the 
ground observer?

Distance train traveled plus length of the train.

d = vtw + L(1 – v2/c2)1/2

= [L(1 + v/u)]/(1 – v2/c2)1/2

So the walker’s speed relative to the ground is:

d/tw = [u + v]/(1 + uv/c2)

Speed of light from a moving source: “c + v”
= [c + v]/(1 + v/c) = c[c + v]/(c + v) = c

Now we know the duration of the walk, so all we need 
is how far the walker went according to an observer on the ground. 
The answer is simple: He went the distance the train traveled plus 
the length of the train. This is, of course, the train length as seen by 
a ground observer and so is contracted by the usual factor 
compared with the length as seen by observers on the train.

Then the walker’s speed  according to ground 
observers is just the distance he went divided by the time required 
for the walk.

Note that this expression reduces to the simple 
addition of velocities when they are small compared with c. 

If we use this formula to find the speed of light emitted 
from a moving source, we find the result is just c as it should be, 
regardless of the value of v.

To obtain this result we used three of the four elements 
of our relativity toolkit.
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THE TRAIN AND THE 
TUNNEL

v

v

This is a famous special relativity paradox that 
appeared early when the theory was still quite controversial. A 
paradox is a proposition that seems self-contradictory, and this is a 
good example.

A train and a tunnel through which it might pass have 
the same length when in the same reference frame. This train is 
capable of going at relativistic speeds in spite of its old fashioned 
appearance. Let’s say it moves down the track at a speed that 
produces a length contraction of a factor of two. (v/c = 0.866)

Here is the paradox. An observer in the tunnel, the 
train pirates, will say that the train is half as long as the tunnel, so 
he could slam the entrance and exit doors simultaneously trapping 
the train in the tunnel. 

On the other hand, an observer on the train says the 
tunnel is half as long as the train. So the front end will emerge from 
the exit door before the rear of the train enters the front door. 
Therefore the pirates cannot trap the train.

How do we resolve this paradox?  
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TRAPPING THE TRAIN

The train will be trapped if the entrance door
closes after the rear of the train passes it, and
the exit door closes before the front of the train 
gets to it. 

As with every game, there must be rules. Here is a reasonable 
definition of what is meant by trapping the train. This statement presumes the 
train pirates simultaneously close the entrance and exit doors. They could use 
other strategies, such as leaving the exit door closed the whole time, which 
would require slightly different rules.
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TRAIN AND TUNNEL II
The pirates know the train schedule and arrange for a flash of 
light to be created at the center of the tunnel at just the right
time. The doors of the tunnel will then close simultaneously
trapping the train completely in the tunnel.

The engineer on the train sees the exit door close a time Lv/c2

before the front door. So the train has time to move fully into 
the tunnel before the front door closes. Both observers agree 
that the exit door closes before the train hits it, and that the
front door closes after the train enters.

No paradox, but a completely destroyed train and tunnel.

The pirates will have to very carefully arrange the timing of the 
closing of the doors. Fortunately for them, the trains in their country run on time 
with nanosecond precision. So with a flash of light from the center of the tunnel 
they can cause the doors to close simultaneously at the right time so the train is 
enclosed. This means that the entrance door closes only after the rear of the train 
passes it, and the exit door closes before the front of the train hits it.

The engineer on the train does not see the closing of the doors as 
being simultaneous. As we have discussed in the last lecture, he will see the exit 
door close first. The time difference is Lv/c2. So if the pirates time their door 
closings just right, the exit door will close before the train hits it, and the 
entrance door will close only after the rear of the train passes it, entering the 
tunnel.

If the engineer knows special relativity, he will spend the last few 
nanoseconds of his life knowing that he and the pirates agree on the sequence of 
events that led to their demise.

This understanding is a direct result of two of our relativity toolkit 
elements: length contraction, and change in synchronization between different 
reference frames.

When the train hits the exit door it will cut a clean hole in it having 
the shape of the cross section of the train. This is because the stresses in the door 
material are transmitted at the speed of sound, and the train is traveling at nearly 
the speed of light. The KE of the shrapnel, assuming only 10 kg is thrown 
around, will be of order of 1018 J, roughly equivalent to 200 megatons of TNT. 
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THE TWINS
Twins Alice and Bob say a fond farewell. She is going on a 
rocket to alpha centauri, 4 light years away. She then 
immediately turns around and returns. Her rocket has a speed 
of 0.6c, so the trip will  take 96/0.6  = 160 months earth time.
Bob says that because her  clocks run slow she will only age
4/5 of 160= 128 months, and so  will be 32 months younger
upon return.  Twins no longer!
But how does this look from her point of view? Bob moves 
at the same speed relative to her, so shouldn’t she think he 
will be younger upon her return?

In this case there is a real difference in aging for the twins. The
lack of symmetry comes from the fact that Alice is not in an 
inertial system during starting, turnaround, and stopping. Bob 
remains in an inertial (unaccelerated) frame the whole time.

The twin paradox is another classic of special 
relativity. In this case the paradox is resolved by showing that one 
twin does age more than the other. If both understand special 
relativity they will agree on this.

The lack of symmetry between the two observers is 
due to the fact that Alice, the traveling twin, moves between 
different unaccelerated reference frames during the trip. First she is 
on Earth. Then in a rocket speeding away. This change requires 
acceleration. When she turns around at alpha centauri, she changes 
again. And finally, to rejoin Bob she must decelerate at the end of 
the trip. 

All this while Bob remains in a single inertial system 
on Earth. 
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Twins send monthly light flashes

How often does Alice, according to her clock, receive flashes
from Bob as she moves away. How often does she receive
flashes during her return trip?

How often does Bob receive flashes from Alice during her 
journey out and back?

By counting received flashes, each twin can monitor the 
other twin’s aging.

We need a way for the twins to keep in touch that will 
allow them to monitor each other’s aging. They agree to send each 
other one light flash each month, according to the sender’s clock. 
They can then count up the flashes sent by their twin, and monitor 
the other twins’ aging.

Then it will be a simple matter of bookkeeping to 
determine whether one ages more and if so by how much.  
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Observed Time between Flashes

In the last lecture we found that Alice and Bob could agree if 
they made enough observations and thought about it. In that
situation, Alice moved past Bob at 0.6c, the same speed as 
Alice’s rocket. As she passed Bob’s first clock, both his clock 
and hers read zero. When she got to his second clock, hers read
8s, and a picture she took of his first clock indicated 4s. 

We conclude that Alice’s observation of any Earth clock from
her receding rocket will reveal it to be running at half speed.
Bob’s flashes will arrive every two months according to her 
clock.
Similarly, Bob will receive flashes from Alice, as she recedes, 
every two months according to earth clocks.

When we reconciled Alice and Bob in the last lecture, 
she was moving past him at 0.6c, the same speed we are using for
Alice’s rocket. When she passed his first clock, both his and hers 
read zero. When she got to his second clock, hers read 8s, and a
picture of his first clock showed it at 4s.

If she had continuously watched his first clock, she 
would have seen it running at half speed the whole time. This is due 
to a combination of time dilation and the fact that she is getting 
farther away all the time, so it takes light longer to reach her. 

We conclude that a receding speed of 0.6c results in 
the other frame’s clocks appearing to run at half speed.

So in the twin problem above, both Bob and Alice will 
receive each other’s flashes once every two months, as long as 
Alice continues to move away from Earth.
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Watching an Approaching Clock
If Alice had watched Bob’s second clock as she approached it,
how  would she have described its rate? If, as she passed 
Bob’s first clock, she had taken a picture of it, what would 
she have seen? The first clock then read 0, and the second 
was synchronized with the first, so Bob would say the second
clock reads –6s since it is 6 light seconds away. Alice’s
picture, taken from the same place at the same time, must agree.

So Alice would have seen Bob’s second clock go from –6s to
+10s while her clock went from 0 to 8s. She would see it 
running at double speed.

Referring once again to our example in the last lecture, 
we now ask what Alice would have seen if she had followed Bob’s 
second clock as she approached it. So we have her repeat the 
picture taking exercise, only this time when she was next to the first 
clock, she takes a picture of the second one.

We argue as before that her picture must agree with 
one taken by Bob since it is taken from the same place at the same 
time. And we know that Bob’s picture must show the second clock 
reading –6s since his first clock then reads zero and they are 6 light 
seconds apart.

So this means that Bob’s second clock ticked off 16s 
while her clock ticked off 8s. The clock she is approaching is 
running at double speed. 

Just as above, this difference is due to a combination 
of time dilation and the fact that she is getting closer to the clock so 
it takes less and less time for the light from it to get to her.

Now we can apply this result to the twin problem.
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Bookkeeping for the Twins
Alice measures the distance to Alpha Centauri to be 4/5*4 =
3.2 light years for a trip length at 0.6c of 64 months. On the 
way out she will receive 32 flashes from Bob. On the way back
she will receive 128 flashes, for a total of 160 flashes. This 
is just the length of her trip in earth months. Bob ages the 
expected amount.

Bob sees Alice’s flashes arrive every two months as she 
recedes. But he doesn’t see her turn around until 4 years = 
48 months after she does so. So during the first 80 + 48 = 
128 months he receives 64 flashes. He then sees her aging 
at twice his rate during the final 32 months. So he counts 
64 + 64 = 128 months.

She has aged 32 months less than he.

Now we are ready to add up the totals to see who aged 
how much. Alice calculates the contracted distance to Alpha 
Centauri to be 0.8*4 = 3.2 light years. At her speed the trip out will 
take 64 months. So she receives 32 flashes from Bob on her way 
out. The return trip also takes 64 months, during which she receives 
128 flashes for a total of 160 flashes. This is just the length of the 
trip in Earth months as we have seen, so Bob ages the expected 
amount.

Bob sees Alice’s flashes arrive every two months on 
her way out. But his rate from her does not double immediately as 
she turns around since it takes light 4 years to get back to Earth. So 
during the first 80 + 48 = 128 months he receives 64 flashes. Then 
during the final 32 months he receives another 64 flashes for a total 
of 128. She has indeed aged less than he by 32 months.

This difference is a consequence of all four of our 
relativity toolkit elements. 



14

The Doppler Effect
If we see clocks running at different rates as we approach or 
recede from them, so we should also see atomic frequencies
changing in the same way. This means that light emitted by
atoms receding from us will be shifted down in frequency. 
This is called a red shift.
We observe galaxies moving away from us in all directions in
the universe. The farther away the galaxy, the faster its motion.
This is called Hubble’s Law:  v = Hd where v is the velocity of
recession, and d the distance away, and H is Hubble’s constant.
How long ago was it the galaxies were all together? t = d/v
= d/Hd = 1/H, or about 13 billion years.

So the Doppler effect along with other work allows us 
to estimate the age of the universe.

The kinematics we went through to show that clocks 
moving towards or away from us change their rates is general, and 
applies to all kinds of clocks. Included are atoms themselves. An 
atom receding from us emits light with lower frequencies than an
atom in our reference frame. This is called a red shift since red 
visible light has a lower frequency than blue visible light. The
effect is general, and applies outside the visible range as well as in 
it. 

In the 1920’s Edwin Hubble established that more 
distant galaxies are moving away from us at larger speeds. The 
speed measurements were done with the Doppler effect. These 
results eventually gave rise to the Big Bang model of the universe 
in which at some time in the past, all galaxies were together.

The time back to that beginning can be estimated from 
Hubble’s Law. It’s accurate value is still debated as well as whether 
other effects may need to be included for a careful understanding of 
the expansion of the universe.
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SPACETIME
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The Past

The Future

Elsewhere

In 1907 Hermann Minkowski presented a four-
dimensional version of the Special Theory of Relativity. Here is a 
two-dimensional picture illustrating some of its features. Above we 
have one space dimension, x, plotted horizontally, and time, plotted 
vertically. Time has been multiplied by c to give it the same 
dimension as x. The center of the diagram is the present.

Immediately above the present is the future, and 
immediately below is the past. The diagonal lines correspond to 
light rays traveling along +x and –x directions. 

Nothing can move faster than light, so the quadrants to 
the right and the left are inaccessible from the present. These are 
referred to as “elsewhere”.

Using the above approach allows many results to be 
presented geometrically or pictorially. This is useful in two 
dimensions as above, or in three dimensions (two space and time)
in which the light ray lines become cones. But no one knows how 
to visualize the full four dimensional presentation. It is still useful 
for calculations, but not for visualization.


