32. (a) The circuit consists of one generator across one inductor; therefore, $\varepsilon_m = V_L$. The current amplitude is

$$I = \frac{\mathcal{E}_m}{X_L} = \frac{\mathcal{E}_m}{\omega_d L} = \frac{25.0 \text{ V}}{(377 \text{ rad/s})(12.7 \text{ H})} = 5.22 \times 10^{-3} \text{ A}.$$

- (b) When the current is at a maximum, its derivative is zero. Thus, Eq. 30-35 gives $\varepsilon_L = 0$ at that instant. Stated another way, since $\varepsilon(t)$ and i(t) have a 90° phase difference, then $\varepsilon(t)$ must be zero when i(t) = I. The fact that $\phi = 90^\circ = \pi/2$ rad is used in part (c).
- (c) Consider Eq. 32-28 with $\varepsilon = -\frac{1}{2}\varepsilon_m$. In order to satisfy this equation, we require $\sin(\omega_d t) = -1/2$. Now we note that the problem states that ε is increasing *in magnitude*, which (since it is already negative) means that it is becoming more negative. Thus, differentiating Eq. 32-28 with respect to time (and demanding the result be negative) we must also require $\cos(\omega_d t) < 0$. These conditions imply that ωt must equal $(2n\pi 5\pi/6)$ [n = integer]. Consequently, Eq. 31-29 yields (for all values of n)

$$i = I \sin \left(2n\pi - \frac{5\pi}{6} - \frac{\pi}{2}\right) = (5.22 \times 10^{-3} \,\text{A}) \left(\frac{\sqrt{3}}{2}\right) = 4.51 \times 10^{-3} \,\text{A}.$$