32. (a) The circuit consists of one generator across one inductor; therefore, $\varepsilon_{m}=V_{L}$. The current amplitude is

$$
I=\frac{\varepsilon_{m}}{X_{L}}=\frac{\varepsilon_{m}}{\omega_{d} L}=\frac{25.0 \mathrm{~V}}{(377 \mathrm{rad} / \mathrm{s})(12.7 \mathrm{H})}=5.22 \times 10^{-3} \mathrm{~A}
$$

(b) When the current is at a maximum, its derivative is zero. Thus, Eq. $30-35$ gives $\varepsilon_{L}=0$ at that instant. Stated another way, since $\varepsilon(t)$ and $i(t)$ have a 90° phase difference, then $\varepsilon(t)$ must be zero when $i(t)=I$. The fact that $\phi=90^{\circ}=\pi / 2 \mathrm{rad}$ is used in part (c).
(c) Consider Eq. 32-28 with $\varepsilon=-\frac{1}{2} \varepsilon_{m}$. In order to satisfy this equation, we require $\sin \left(\omega_{d} t\right)=-1 / 2$. Now we note that the problem states that ε is increasing in magnitude, which (since it is already negative) means that it is becoming more negative. Thus, differentiating Eq. 32-28 with respect to time (and demanding the result be negative) we must also require $\cos \left(\omega_{d} t\right)<0$. These conditions imply that ωt must equal $(2 n \pi-5 \pi / 6)$ [n $=$ integer]. Consequently, Eq. 31-29 yields (for all values of n)

$$
i=I \sin \left(2 n \pi-\frac{5 \pi}{6}-\frac{\pi}{2}\right)=\left(5.22 \times 10^{-3} \mathrm{~A}\right)\left(\frac{\sqrt{3}}{2}\right)=4.51 \times 10^{-3} \mathrm{~A}
$$

