13. (a) We use $I=E_{m}^{2} / 2 \mu_{0} c$ to calculate E_{m} :

$$
\begin{aligned}
E_{m} & =\sqrt{2 \mu_{0} I_{c}}=\sqrt{2\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(1.40 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)} \\
& =1.03 \times 10^{3} \mathrm{~V} / \mathrm{m} .
\end{aligned}
$$

(b) The magnetic field amplitude is therefore

$$
B_{m}=\frac{E_{m}}{c}=\frac{1.03 \times 10^{4} \mathrm{~V} / \mathrm{m}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=3.43 \times 10^{-6} \mathrm{~T}
$$

