24. (a) We note that the cross section area of the beam is $\pi d^{2} / 4$, where d is the diameter of the $\operatorname{spot}(d=2.00 \lambda)$. The beam intensity is

$$
I=\frac{P}{\pi d^{2} / 4}=\frac{5.00 \times 10^{-3} \mathrm{~W}}{\pi\left[(2.00)\left(633 \times 10^{-9} \mathrm{~m}\right)\right]^{2} / 4}=3.97 \times 10^{9} \mathrm{~W} / \mathrm{m}^{2}
$$

(b) The radiation pressure is

$$
p_{r}=\frac{I}{c}=\frac{3.97 \times 10^{9} \mathrm{~W} / \mathrm{m}^{2}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=13.2 \mathrm{~Pa} .
$$

(c) In computing the corresponding force, we can use the power and intensity to eliminate the area (mentioned in part (a)). We obtain

$$
F_{r}=\left(\frac{\pi d^{2}}{4}\right) p_{r}=\left(\frac{P}{I}\right) p_{r}=\frac{\left(5.00 \times 10^{-3} \mathrm{~W}\right)(13.2 \mathrm{~Pa})}{3.97 \times 10^{9} \mathrm{~W} / \mathrm{m}^{2}}=1.67 \times 10^{-11} \mathrm{~N}
$$

(d) The acceleration of the sphere is

$$
\begin{aligned}
a & =\frac{F_{r}}{m}=\frac{F_{r}}{\rho\left(\pi d^{3} / 6\right)}=\frac{6\left(1.67 \times 10^{-11} \mathrm{~N}\right)}{\pi\left(5.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left[(2.00)\left(633 \times 10^{-9} \mathrm{~m}\right)\right]^{3}} \\
& =3.14 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

