14. (a) For the maximum adjacent to the central one, we set $m=1$ in Eq. 35-14 and obtain

$$
\theta_{1}=\left.\sin ^{-1}\left(\frac{m \lambda}{d}\right)\right|_{m=1}=\sin ^{-1}\left[\frac{(1)(\lambda)}{100 \lambda}\right]=0.010 \mathrm{rad} .
$$

(b) Since $y_{1}=D \tan \theta_{1}$ (see Fig. 35-10(a)), we obtain

$$
y_{1}=(500 \mathrm{~mm}) \tan (0.010 \mathrm{rad})=5.0 \mathrm{~mm} .
$$

The separation is $\Delta y=y_{1}-y_{0}=y_{1}-0=5.0 \mathrm{~mm}$.

