34. (a) We can use phasor techniques or use trig identities. Here we show the latter approach. Since $\sin a+\sin (a+b)=2 \cos (b / 2) \sin (a+b / 2)$, we find

$$
E_{1}+E_{2}=2 E_{0} \cos \left(\frac{\phi}{2}\right) \sin \left(\omega \mathrm{t}+\frac{\phi}{2}\right)
$$

where $E_{\mathrm{o}}=2.00 \mu \mathrm{~V} / \mathrm{m}, \omega=1.26 \times 10^{15} \mathrm{rad} / \mathrm{s}$, and $\phi=39.6 \mathrm{rad}$. This shows that the electric field amplitude of the resultant wave is

$$
E=2 E_{\mathrm{o}} \cos (\phi / 2)=2.33 \mu \mathrm{~V} / \mathrm{m}
$$

(b) Eq. 35-22 leads to

$$
I=4 I_{0}(\cos (\phi / 2))^{2}=1.35 I_{0}
$$

at point P, and

$$
I_{\mathrm{cen}}=4 I_{\mathrm{o}}(\cos (0))^{2}=4 I_{\mathrm{o}}
$$

at the center. Thus, $\frac{I}{I_{\text {cen }}}=\frac{1.35}{4}=0.338$.
(c) The phase difference ϕ (in wavelengths) is gotten from ϕ in radians by dividing by 2π. Thus, $\phi=39.6 / 2 \pi=6.3$ wavelengths. Thus, point P is between the sixth side maximum (at which $\phi=6$ wavelengths) and the seventh minimum (at which $\phi=6 \frac{1}{2}$ wavelengths).
(d) The rate is given by $\omega=1.26 \times 10^{15} \mathrm{rad} / \mathrm{s}$.
(e) The angle between the phasors is $\phi=39.6 \mathrm{rad}=2270^{\circ}$ (which would look like about 110° when drawn in the usual way).

