88. (a) The minimum path length difference occurs when both rays are nearly vertical. This would correspond to a point as far up in the picture as possible. Treating the screen as if it extended forever, then the point is at $y=\infty$.
(b) When both rays are nearly vertical, there is no path length difference between them. Thus at $y=\infty$, the phase difference is $\phi=0$.
(c) At $y=0$ (where the screen crosses the x axis) both rays are horizontal, with the ray from S_{1} being longer than the one from S_{2} by distance d.
(d) Since the problem specifies $d=6.00 \lambda$, then the phase difference here is $\phi=6.00$ wavelengths and is at its maximum value.
(e) With $D=20 \lambda$, use of the Pythagorean theorem leads to

$$
\phi=\frac{L_{1}-L_{2}}{\lambda}=\frac{\sqrt{d^{2}+(d+D)^{2}}-\sqrt{d^{2}+D^{2}}}{\lambda}=5.80
$$

which means the rays reaching the point $y=d$ have a phase difference of roughly 5.8 wavelengths.
(f) The result of the previous part is "intermediate" - closer to 6 (constructive interference) than to $5 \frac{1}{2}$ (destructive interference).

