15. (a) The distance between q_1 and q_2 is

$$r_{12} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-0.020 - 0.035)^2 + (0.015 - 0.005)^2} = 0.056 \text{ m}.$$

The magnitude of the force exerted by q_1 on q_2 is

$$F_{21} = k \frac{|q_1q_2|}{r_{12}^2} = \frac{\left(8.99 \times 10^9\right) \left(3.0 \times 10^{-6}\right) \left(4.0 \times 10^{-6}\right)}{\left(0.056\right)^2} = 35$$
 N.

(b) The vector \vec{F}_{21} is directed towards q_1 and makes an angle θ with the +x axis, where

$$\theta = \tan^{-1}\left(\frac{y_2 - y_1}{x_2 - x_1}\right) = \tan^{-1}\left(\frac{1.5 - 0.5}{-2.0 - 3.5}\right) = -10.3^\circ \approx -10^\circ.$$

(c) Let the third charge be located at (x_3, y_3) , a distance r from q_2 . We note that q_1, q_2 and q_3 must be collinear; otherwise, an equilibrium position for any one of them would be impossible to find. Furthermore, we cannot place q_3 on the same side of q_2 where we also find q_1 , since in that region both forces (exerted on q_2 by q_3 and q_1) would be in the same direction (since q_2 is attracted to both of them). Thus, in terms of the angle found in part (a), we have $x_3 = x_2 - r \cos\theta$ and $y_3 = y_2 - r \sin\theta$ (which means $y_3 > y_2$ since θ is negative). The magnitude of force exerted on q_2 by q_3 is $F_{23} = k |q_2q_3|/r^2$, which must equal that of the force exerted on it by q_1 (found in part (a)). Therefore,

$$k \frac{|q_2 q_3|}{r^2} = k \frac{|q_1 q_2|}{r_{12}^2} \Rightarrow r = r_{12} \sqrt{\frac{q_3}{q_1}} = 0.0645 \,\mathrm{cm} \,.$$

Consequently, $x_3 = x_2 - r \cos \theta = -2.0 \text{ cm} - (6.45 \text{ cm}) \cos(-10^\circ) = -8.4 \text{ cm}$,

(d) and $y_3 = y_2 - r \sin \theta = 1.5 \text{ cm} - (6.45 \text{ cm}) \sin(-10^\circ) = 2.7 \text{ cm}.$