59. If the relative difference between the proton and electron charges (in absolute value) were

$$
\frac{q_{p}-\left|q_{e}\right|}{e}=0.0000010
$$

then the actual difference would be $q_{p}-\left|q_{e}\right|=1.6 \times 10^{-25} \mathrm{C}$. Amplified by a factor of $29 \times$ 3×10^{22} as indicated in the problem, this amounts to a deviation from perfect neutrality of

$$
\Delta q=\left(29 \times 3 \times 10^{22}\right)\left(1.6 \times 10^{-25} \mathrm{C}\right)=0.14 \mathrm{C}
$$

in a copper penny. Two such pennies, at $r=1.0 \mathrm{~m}$, would therefore experience a very large force. Eq. 21-1 gives

$$
F=k \frac{(\Delta q)^{2}}{r^{2}}=1.7 \times 10^{8} \mathrm{~N} .
$$

