10. We place the origin of our coordinate system at point P and orient our y axis in the direction of the $q_{4}=-12 q$ charge (passing through the $q_{3}=+3 q$ charge). The x axis is perpendicular to the y axis, and thus passes through the identical $q_{1}=q_{2}=+5 q$ charges. The individual magnitudes $\left|\vec{E}_{1}\right|,\left|\vec{E}_{2}\right|,\left|\vec{E}_{3}\right|$, and $\left|\vec{E}_{4}\right|$ are figured from Eq. 22-3, where the absolute value signs for q_{1}, q_{2}, and q_{3} are unnecessary since those charges are positive (assuming $q>0$). We note that the contribution from q_{1} cancels that of q_{2} (that is, $\left|\vec{E}_{1}\right|=\left|\vec{E}_{2}\right|$), and the net field (if there is any) should be along the y axis, with magnitude equal to

$$
\vec{E}_{\text {net }}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\left|q_{4}\right|}{(2 d)^{2}}-\frac{q_{3}}{d^{2}}\right) \hat{\mathrm{j}}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{12 q}{4 d^{2}}-\frac{3 q}{d^{2}}\right) \hat{\mathrm{j}}
$$

which is seen to be zero. A rough sketch of the field lines is shown below:

