24. From symmetry, we see that the net field at P is twice the field caused by the upper semicircular charge $+q=\lambda \cdot \pi R$ (and that it points downward). Adapting the steps leading to Eq. 22-21, we find

$$
\vec{E}_{\text {net }}=\left.2(-\hat{\mathrm{j}}) \frac{\lambda}{4 \pi \varepsilon_{0} R} \sin \theta\right|_{-90^{\circ}} ^{90^{\circ}}=-\frac{q}{\varepsilon_{0} \pi^{2} R^{2}} \hat{\mathrm{j}} .
$$

(a) With $\mathrm{R}=8.50 \times 10^{-2} \mathrm{~m}$ and $q=1.50 \times 10^{-8} \mathrm{C},\left|\vec{E}_{\text {net }}\right|=23.8 \mathrm{~N} / \mathrm{C}$.
(b) The net electric field $\vec{E}_{\text {net }}$ points in the $-\hat{\mathrm{j}}$ direction, or -90° counterclockwise from the $+x$ axis.

