Question

Imagine a cube of side a positioned in a region of constant electric field, strength E, as shown.

Which of the following statements about the net electric flux Φ through the surface of this cube is true?

(a)
$$\Phi = 0$$
 (b) $\Phi = 2Ea^2$ (c) $\Phi = 6Ea^2$

Answer

Which of the following statements about the net electric flux Φ through the surface of this cube is true?

(a)
$$\Phi = 0$$

(a)
$$\Phi = 0$$
 (b) $\Phi = 2Ea^2$ (c) $\Phi = 6Ea^2$

$$(c) \Phi = 6Ea^2$$

- 1. The integral $\vec{E} \cdot d\vec{A} = 0$ on the four sides that are parallel to
- 2. $\vec{E} \cdot d\vec{A}$ on bottom face is negative $d\vec{A}$ is out; \vec{E} is "in"
- 3. $\vec{E} \cdot d\vec{A}$ on top face is positive $d\vec{A}$ is out; \vec{E} is "out"