Lecture 4 Electric Potential
and/ Potential Energy Ch. 25

*Review from Lecture 3

«Cartoon - There is an electric energy associated with the position of a
charge.

*Opening Demo -

*Warm-up problems

*Physlet

*Topics
Electric potential energy and electric potential
«Calculation of potential from field
*Potential from a point charge
*Potential due to a group of point charges, electric dipole
*Potential due to continuous charged distributions
Calculating the filed from the potential
Electric potential energy from a system of point charge
*Equipotential Surface
*Potential of a charged isolated conductor

*Demos
teflon and silk
*Charge Tester, non-spherical conductor, compare charge density at
Radii
*Van de Graaff generator with pointed objects






Charges on a Conductor

® Why do the charges always move to the surface of a
conductor ?

® Gauss Law tells us!!
® E =0 inside a conductor when in equilibrium (electrostatics) !
* Why?

e If E #0, then charges would have forces on them and
they would move !

® Therefore from Gauss' Law, the charge on a conductor must
only reside on the surface(s) !
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Potential Energy and Electric potential

* The electric force is mathematically the same as gravity so it too must be a
conservative force. We will find it useful to define a potential energy as is the
case for gravity. Recall that the change in the potential energy in moving from
one point a to point b is the negative of the work done by the electric force.

e AU=U,-U, =-W =-Work done by the electric force = - JF -ds
b a
e Since F=¢q,E, AU =—qOJE-dS and

* Electric Potential difference = Potential energy change/ unit charge

AV = A_U SI unit of electric potential 1s volt (V):
q, 1 Volt =1 Joule/Coulomb (1 V=1 J/C)

AV =V, -V, = —JE -dS (independent of path, ds)

e Joule is too large a unit of energy when working at the atomic or molecular level,
so use the electron-volt (eV), the energy obtained when an electron moves through

a potential difference of 1 V. leV =16x10-197J 5



i
AU =U, -U, = - Work done by the electric force = _j F-ds

A
Path Field line
AL\

y

AV =V, -V = —JE .ds (independent of path, ds)

Therefore, electric force is a conservative force. )
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*The potential difference is the negative of the work done

per unit charge by an electric field on a positive unit
charge

when it moves from one point fo another.
* V is a scalar not a vector. Simplifies solving problems.

*We are free to choose V to be 0 at any location. Normally

V is chosen to be 0 at the negative terminal of a battery or
0 at infinity for a point charge. 7



Example of finding the potential difference in
a Uniform Field

What is the electric potential difference for a unit positive charge moving in an
uniform electric field from a to b?

» E

> E

x direction

0 .

a b
b b

AV :—J-E-ds =—Ejdx = —E (x> — Xa)

b__Y_A

AV =—-Ed dV = —FEdx d

AU =qAV E=-dV /dx
AU =—qEd



Example for a battery in a circuit

* In a9 volt battery, typically used in IC circuits, the positive terminal has a
potential 9 v higher than the negative terminal. If one micro-Coulomb of
positive charge flows through an external circuit from the positive to negative
terminal, how much has its potential energy been changed?

< AV:%:Vb—va=(0—9)v
. Q)

| AU =-9q

v =(—9V)><1><1O_6C

) AU =-9x10"°Joules

AU =— 9 microJoules
=-9u]

Potential energy is lower by O uJ

We also assumed that the potential at b was 0



Example of a proton accelerated 1n a uniform
field

A proton is placed in an electric field of E=10° V/m and released. After going 10
cm, what is its speed?

Use conservation of energy. E=105V/m Zqu
> d=10cm V= 1/—
a b m
—>
n
AV =V, -V, = —Ed v:\/2x1.6><1019(:><105;><0.1m
-27
AU:qAV:_qu 1.67 x10 kg
AU+AK =0 o m
AK = —AU V—1.4X10:
AK = qEd
: % Ed
—my- =
> q
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What is the electric potential when moving
from one point to another in a field due to a
point charge?
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Potential of a point charge at a distance R

f
V,-V,=—[E-dF

1_5'(1,7
o @ T 21 117 1 1
=—[E-df =—kgcos0’ [ dr =kq—| =kg(—--)
- o T rle o R
V,—V,=0-V, = k<L
L, | R
- "
R A /
1
// k =
A S 4rceo
/ i\ Replace R with r
1 V= 1 q eqn 25-26

Admeo r
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Electric potential for a positive point charge

V(r)

k
V(r)=—L
r
P
r = \/ x° 4y A

e
V is a scalar

V is positive for positive charges, negative for negative charges.
ris always positive.

For many point charges, the potential at a point in space is the
simple algebraic sum (Not a vector sum)

13



Electric potential due to a positive point charge

Hydrogen atom.

e What is the electric potential at a distance of 0.529 A from
the proton? 1A= 101" m

r=0.529 A

9 Nm? 19
. (8.99><1O 78 )x1.6><10 C

V = = 210
R 529107 m

V = 27.2% = 27.2Volts

What is the electric potential energy of the electron
at that point?

U=qV=(-1.6 x 10" C) (27.2 V)=-43.52x 10-1°]
or - 27.2 eV where eV stands for electron volts.

Total energy of the electron in the ground state of hydrogen 1s - 13.6 ¢V
Also U= 2E =-27.2 eV. This agrees with above formula. 14



What 1s the electric potential due to several
point charges?

For many point charges, the potential at a point in space is the simple algebraic sum
(Not a vector sum)

_vy ka4
V_Zi‘f:-
y

A

op ° ¥y

"2 =ik L2248
ri r2 rs3
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/L & Problem

@—d
1 q =+12nC qz =-24 nC
l o/ I

qs = +31 nC q4 = +17nC

d=13m.
d What is the electric potential at P?
VE 14

Key Idea: Electric potential is algebraic sum of the electric potentials
of the 4 charges. The relative orientations of the charges does not

matter.

4 qf /] Q/ qé q q[. B d
V | 24 === b — ( e - H0 3 ) -
( ) 41eq Z" I 41ep \ r & r P \/é
g1 +q2+qs+qa = (12—-24+31+17) x 10°%C
= 36 x 10~°C

~ (8.99 x 10°Nm? /C?)(36 x 1072C)
. 0.919m

== 980V




Potential due to a dipole

For two point charges, the total potential is the sum of
the potentials of each point charge.

SO’ Vdipole = Vtotal — Va + Vb

Vdipole — Va + Vb — k(:‘ + (_q)j

a rb

_ I, — I,
- kq( r.arb j

We are interested in the regime where r>>d.

As in fig 2, r, and r, are nearly parallel. And the
difference in their length is dcos6. Also because r>>d,
r,r, is approximately r2.

dcos@ kpcos6

2 2
r r

where p is the dipole moment.

v

dipole

:kq




Fields and potentials for continuous
charge distributions

e Fields and potentials are closely related, the basic relation

IS

AV:Vb—Va:—

Pr

5
[

—

E-ds

U

s
! o |

e If E is known, then one can get AV by performing the
integral (or one can get just V by starting the integral

path at infinity)

e Alternatively, if the charge distribution is known, one also

has

V() = 1 qu

r



Potential due to a ring of charge

» Direct integration. Since V is a scalar, it is easier to evaluate V than E.
« Find V on the axis of a ring of total charge Q. Use the formula for a point
charge, but replace q with elemental charge dq and integrate.
Z
K
Point charge V = 9

' kd
For an element of charge dg, dV = xaq

r

P

ris a constant as we integrate.
- kdg
r

kdq

* (22 +R?)

k Kk
_ d V= Q
\/(22+R2)J Tz J(Z2 +R?)

This is simpler than finding E because V 19
IS not a vector.

4 =




Potential due to a line charge

We know that for an element of charge dq :\(’
the potential is ~ dV = deq

For the line charge let the charge density be A.

Then dg=Adx i
Y 4
So, dV = k@ But, r=+/x*+d? B S TP
~- X -
Then, dV =k_dX
VX% +d? - . -

Now, we can find the total potential V produced by the rod at point P by
integrating along the length of the rod from x=0 to x=L

L L L
Adx dx L
V=]dV=)k = kA = V=kAln(x +vx* +d°
! J)‘ VX% +d? 'o[\/x2+d2 ( )o
L+l +d’
So, V=kMIn(L ++/L*+d*)-Ind) Or, V=klln[ y
20



A new method to find E 1t the potential 1s known.
If we know V, how do we find E?

AV=—JE-d§ dE:fdx+]A‘dy+l€dz

AV = —F - s dV =-E dx—-E dy—-E,dz
__av

E.= dx
__av

E, = dy
__4dav

E. = dz

E=Ei+Ej+Ek

So the x component of E is the derivative of V with respect to x, etc.

—If V = a constant, then E, = 0. The lines or surfaces on which V
remains constant are called equipotential lines or surfaces.

—See example on next slide .



Equipotential Surfaces

 Three examples

 What is the obvious equipotential surface and
equipotential volume for an arbitrary shaped charged
conductor?

« See physlet 9.3.2 Which equipotential surfaces fit the
field lines?

22



‘Field line

Equipotential surface (a)

(¢) (b)

Blue lines are the electric field lines

Orange dotted lines represent the equipotential surfaces

c)  Uniform E field

a)  Electric Dipole b) Point charge
E=E_,E,=0,E =0
g - 4V
(ellipsoidal concentric shells) (concentric shells) T dx
V=-Ed

V = constant in y and z
directions 23
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Potentials and Fields Near Conductors

If a conductor is positioned within a region of electric field, it will distort the
field shape.

We have seen that field lines are perpendicular to the surface of a conductor
(otherwise free charges would not be in equilibrium). Consequently, near the
conductor, equipotential lines, which are perpendicular to field lines, are parallel
to the conductor’s surface

Both electric field and potentials
are strongly affected by conductor
placed in electric field.

v Va Vs Vi Vs Ve v, . WY, Y% / Ve
E

V E=0 A
— (Inside) A4

T

1
L 4

Y
{ My 1
[hn ¥

\ E:}po(cmial surfaces

Equipotential surfaces



The Role of Sharp Points on Conducting Surfaces
(a semi-rigorous argument)

Thinking of the two ends of this irregular object as
two spheres of radii r; and r, if q; and gz are the
charges carried by each “sphere”, and keeping in
mind that the whole object is an equipotential, then
Vi =Vz = q,/4n€,r, = q,/4TE,T,.

_ Charge ¢

Remembering also that, in terms of local charge

density, q = OA , with A=4nr2 and E=0/€,, with a few o ‘ \
Simple Sfeps one gefs (equipotential surface)
E i o
= 2 [

The electric field is larger in the regions of small radius of curvature. Fields
can be very large around a sharp point, even though the whole conductor is at
the same potential.

In air, fields of the order of 3 MV/m will cause “electric breakdown” (the air
gets to be ionized, and discharges can occur).



Dielectric Breakdown: Application of Gauss’s Law

If the electric field in a gas exceeds a certain value, the gas
breaks down and you get a spark or lightning bolt if the gas
is air. In dry air at STP, you get a spark when

E23><104l
cm

V = constant on surface of conductor Radius r,

26



This explains why:

e Sharp points on conductors have the highest electric fields and cause
corona discharge or sparks.

e Pick up the most charge with charge tester from the pointy regions of the
non-spherical conductor.

* Use non-spherical metal conductor charged with teflon rod. Show
variation of charge across surface with charge tester.

Radius R

V = constant on surface of conductor

+
_i!.-i-
)
+
Cloud 2
, +__+ + 4+
Van de Graaff 4 ﬂ
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How does a conductor shield the interior from an
exterior electric field?

————_————————— —~— - Start out with a uniform electric field
v with no excess charge on conductor.

Electrons on surface of conductor adjust

so that:
= D 2
:___ Feo K 1. E=0 inside conductor
< 37 2. Electric field lines are perpendicular

- to the surfacegsuppose they weren’t?

% 3.DoesE-= just outside the conductor
—— T 4.l csunlform over the surface?

5. Is the surface an equipotential?

6. If the surface had an excess charge, how would your answers change?

28



A metal slab is put in a uniform electric field of 106 N/C
with the field perpendicular to both surfaces.

— Show how the charges are distributed on the
conductor.

— Draw the appropriate pill boxes.

— What is the charge density on each face of
the slab?

— Apply Gauss’s Law. [E-da= T

€

29



What is the electric potential of a uniformly charged circular disk?

We can treat the disk as a set of ring charges. R
The ring of radius R’ and thickness dR’ has an
area of 2nrR’dR’ and it's charge is dq = cdA =
o6(2nR’)dR’ where 6=Q/(nR?), the surface
charge density. The potential due to the charge

on this ring at point P given by
V= K Q ;
V@ +R'))
The potential dV at a point P due to
the charged ring of radius R’ is

B kdq _ ko2nR'dR!
dV = =
JVZ+RY) JZ+R)) R' [
dR'—1 <
Integrating R’ from R’=0 to R’=R R

R 1 ]
v = [KOZIRAR v/ = 2kon(vz? +R? -2)
2 (22 +(R')?) |
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