16. In applying Eq. 24-27, we are assuming $V \rightarrow 0$ as $r \rightarrow \infty$. All corner particles are equidistant from the center, and since their total charge is

$$
2 q_{1}-3 q_{1}+2 q_{1}-q_{1}=0,
$$

then their contribution to Eq. 24-27 vanishes. The net potential is due, then, to the two $+4 q_{2}$ particles, each of which is a distance of $a / 2$ from the center. In SI units, it is

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{4 q_{2}}{a / 2}+\frac{1}{4 \pi \varepsilon_{0}} \frac{4 q_{2}}{a / 2}=\frac{16 q_{2}}{4 \pi \varepsilon_{0} a}=\frac{16\left(8.99 \times 10^{9}\right)\left(6.00 \times 10^{-12}\right)}{0.39}=2.21 \mathrm{~V} .
$$

