41. (a) Let $\ell=0.15 \mathrm{~m}$ be the length of the rectangle and $w=0.050 \mathrm{~m}$ be its width. Charge q_{1} is a distance ℓ from point A and charge q_{2} is a distance w, so the electric potential at A is

$$
\begin{aligned}
V_{A} & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1}}{\ell}+\frac{q_{2}}{w}\right]=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left[\frac{-5.0 \times 10^{-6} \mathrm{C}}{0.15 \mathrm{~m}}+\frac{2.0 \times 10^{-6} \mathrm{C}}{0.050 \mathrm{~m}}\right] \\
& =6.0 \times 10^{4} \mathrm{~V} .
\end{aligned}
$$

(b) Charge q_{1} is a distance w from point b and charge q_{2} is a distance ℓ, so the electric potential at B is

$$
\begin{aligned}
V_{B} & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1}}{w}+\frac{q_{2}}{\ell}\right]=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left[\frac{-5.0 \times 10^{-6} \mathrm{C}}{0.050 \mathrm{~m}}+\frac{2.0 \times 10^{-6} \mathrm{C}}{0.15 \mathrm{~m}}\right] \\
& =-7.8 \times 10^{5} \mathrm{~V}
\end{aligned}
$$

(c) Since the kinetic energy is zero at the beginning and end of the trip, the work done by an external agent equals the change in the potential energy of the system. The potential energy is the product of the charge q_{3} and the electric potential. If U_{A} is the potential energy when q_{3} is at A and U_{B} is the potential energy when q_{3} is at B, then the work done in moving the charge from B to A is

$$
W=U_{A}-U_{B}=q_{3}\left(V_{A}-V_{B}\right)=\left(3.0 \times 10^{-6} \mathrm{C}\right)\left(6.0 \times 10^{4} \mathrm{~V}+7.8 \times 10^{5} \mathrm{~V}\right)=2.5 \mathrm{~J}
$$

(d) The work done by the external agent is positive, so the energy of the three-charge system increases.
(e) and (f) The electrostatic force is conservative, so the work is the same no matter which path is used.

