53. If the electric potential is zero at infinity, then the potential at the surface of the sphere is given by $V=q / 4 \pi \varepsilon_{0} r$, where q is the charge on the sphere and r is its radius. Thus

$$
q=4 \pi \varepsilon_{0} r V=\frac{(0.15 \mathrm{~m})(1500 \mathrm{~V})}{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}=2.5 \times 10^{-8} \mathrm{C}
$$

