16. (a) $i=V / R=23.0 \mathrm{~V} / 15.0 \times 10^{-3} \Omega=1.53 \times 10^{3} \mathrm{~A}$.
(b) The cross-sectional area is $A=\pi r^{2}=\frac{1}{4} \pi D^{2}$. Thus, the magnitude of the current density vector is

$$
J=\frac{i}{A}=\frac{4 i}{\pi D^{2}}=\frac{4\left(1.53 \times 10^{-3} \mathrm{~A}\right)}{\pi\left(6.00 \times 10^{-3} \mathrm{~m}\right)^{2}}=5.41 \times 10^{7} \mathrm{~A} / \mathrm{m}^{2} .
$$

(c) The resistivity is

$$
\rho=R A / L=\left(15.0 \times 10^{-3} \Omega\right)(\pi)\left(6.00 \times 10^{3} \mathrm{~m}\right)^{2} /[4(4.00 \mathrm{~m})]=10.6 \times 10^{-8} \Omega \cdot \mathrm{~m} .
$$

(d) The material is platinum.

