3. Suppose the charge on the sphere increases by Δq in time Δt. Then, in that time its potential increases by

$$
\Delta V=\frac{\Delta q}{4 \pi \varepsilon_{0} r}
$$

where r is the radius of the sphere. This means

$$
\Delta q=4 \pi \varepsilon_{0} r \Delta V
$$

Now, $\Delta q=\left(i_{\text {in }}-i_{\text {out }}\right) \Delta t$, where $i_{\text {in }}$ is the current entering the sphere and $i_{\text {out }}$ is the current leaving. Thus,

$$
\begin{aligned}
\Delta t & =\frac{\Delta q}{i_{\text {in }}-i_{\text {out }}}=\frac{4 \pi \varepsilon_{0} r \Delta V}{i_{\text {in }}-i_{\text {out }}} \\
& =\frac{(0.10 \mathrm{~m})(1000 \mathrm{~V})}{\left(8.99 \times 10^{9} \mathrm{~F} / \mathrm{m}\right)(1.0000020 \mathrm{~A}-1.0000000 \mathrm{~A})}=5.6 \times 10^{-3} \mathrm{~s}
\end{aligned}
$$

