74. (a) If S_{1} is closed, and S_{2} and S_{3} are open, then $i_{a}=\varepsilon / 2 R_{1}=120 \mathrm{~V} / 40.0 \Omega=3.00 \mathrm{~A}$.
(b) If S_{3} is open while S_{1} and S_{2} remain closed, then

$$
R_{\mathrm{eq}}=R_{1}+R_{1}\left(R_{1}+R_{2}\right) /\left(2 R_{1}+R_{2}\right)=20.0 \Omega+(20.0 \Omega) \times(30.0 \Omega) /(50.0 \Omega)=32.0 \Omega,
$$ so $i_{a}=\varepsilon / R_{\text {eq }}=120 \mathrm{~V} / 32.0 \Omega=3.75 \mathrm{~A}$.

(c) If all three switches S_{1}, S_{2} and S_{3} are closed, then $R_{\text {eq }}=R_{1}+R_{1} R^{\prime} /\left(R_{1}+R^{\prime}\right)$ where

$$
R^{\prime}=R_{2}+R_{1}\left(R_{1}+R_{2}\right) /\left(2 R_{1}+R_{2}\right)=22.0 \Omega,
$$

i.e.,

$$
R_{\mathrm{eq}}=20.0 \Omega+(20.0 \Omega)(22.0 \Omega) /(20.0 \Omega+22.0 \Omega)=30.5 \Omega,
$$

so $i_{a}=\varepsilon / R_{\text {eq }}=120 \mathrm{~V} / 30.5 \Omega=3.94 \mathrm{~A}$.

