9. (a) $B_{P 1}=\mu_{0} i_{1} / 2 \pi r_{1}$ where $i_{1}=6.5 \mathrm{~A}$ and $r_{1}=d_{1}+d_{2}=0.75 \mathrm{~cm}+1.5 \mathrm{~cm}=2.25 \mathrm{~cm}$, and $B_{P 2}=\mu_{0} i_{2} / 2 \pi r_{2}$ where $r_{2}=d_{2}=1.5 \mathrm{~cm}$. From $B_{P 1}=B_{P 2}$ we get

$$
i_{2}=i_{1}\left(\frac{r_{2}}{r_{1}}\right)=(6.5 \mathrm{~A})\left(\frac{1.5 \mathrm{~cm}}{2.25 \mathrm{~cm}}\right)=4.3 \mathrm{~A} .
$$

(b) Using the right-hand rule, we see that the current i_{2} carried by wire 2 must be out of the page.

