68. Regarding the forces on q_{3} exerted by q_{1} and q_{2}, one must "push" and the other must "pull" in order that the net force is zero; hence, q_{1} and q_{2} have opposite signs. For individual forces to cancel, their magnitudes must be equal:

$$
k \frac{\left|q_{1}\right|\left|q_{3}\right|}{\left(L_{12}+L_{23}\right)^{2}}=k \frac{\left|q_{2}\right|\left|q_{3}\right|}{\left(L_{23}\right)^{2}} .
$$

With $L_{23}=2.00 L_{12}$, the above expression simplifies to $\frac{\left|q_{1}\right|}{9}=\frac{\left|q_{2}\right|}{4}$. Therefore, $q_{1}=-9 q_{2} / 4$, or $q_{1} / q_{2}=-2.25$.

