44. We assume there are no forces or force-components along the x direction. We combine Eq. 22-28 with Newton's second law, then use Eq. 4-21 to determine time t followed by Eq. 4-23 to determine the final velocity (with $-g$ replaced by the a_{y} of this problem); for these purposes, the velocity components given in the problem statement are re-labeled as $v_{0 x}$ and $v_{0 y}$ respectively.
(a) We have $\vec{a}=q \vec{E} / m=-(e / m) \vec{E}$ which leads to

$$
\vec{a}=-\left(\frac{1.60 \times 10^{-19} \mathrm{C}}{9.11 \times 10^{-31} \mathrm{~kg}}\right)\left(120 \frac{\mathrm{~N}}{\mathrm{C}}\right) \hat{\mathrm{j}}=-\left(2.1 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}
$$

(b) Since $v_{x}=v_{0 x}$ in this problem (that is, $a_{x}=0$), we obtain

$$
\begin{aligned}
t & =\frac{\Delta x}{v_{0 x}}=\frac{0.020 \mathrm{~m}}{1.5 \times 10^{5} \mathrm{~m} / \mathrm{s}}=1.3 \times 10^{-7} \mathrm{~s} \\
v_{y} & =v_{0 y}+a_{y} t=3.0 \times 10^{3} \mathrm{~m} / \mathrm{s}+\left(-2.1 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}\right)\left(1.3 \times 10^{-7} \mathrm{~s}\right)
\end{aligned}
$$

which leads to $v_{y}=-2.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Therefore, the final velocity is

$$
\vec{v}=\left(1.5 \times 10^{5} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{i}}-\left(2.8 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{j}}
$$

