29. We denote the radius of the thin cylinder as $R=0.015 \mathrm{~m}$. Using Eq. 23-12, the net electric field for $r>R$ is given by

$$
E_{\text {net }}=E_{\text {wire }}+E_{\text {cylinder }}=\frac{-\lambda}{2 \pi \varepsilon_{0} r}+\frac{\lambda^{\prime}}{2 \pi \varepsilon_{0} r}
$$

where $-\lambda=-3.6 \mathrm{nC} / \mathrm{m}$ is the linear charge density of the wire and λ^{\prime} is the linear charge density of the thin cylinder. We note that the surface and linear charge densities of the thin cylinder are related by

$$
q_{\text {cylinder }}=\lambda^{\prime} L=\sigma(2 \pi R L) \Rightarrow \lambda^{\prime}=\sigma(2 \pi R) .
$$

Now, $E_{\text {net }}$ outside the cylinder will equal zero, provided that $2 \pi R \sigma=\lambda$, or

$$
\sigma=\frac{\lambda}{2 \pi R}=\frac{3.6 \times 10^{-6} \mathrm{C} / \mathrm{m}}{(2 \pi)(0.015 \mathrm{~m})}=3.8 \times 10^{-8} \mathrm{C} / \mathrm{m}^{2} .
$$

