23. The resistance of conductor A is given by

$$
R_{A}=\frac{\rho L}{\pi r_{A}^{2}},
$$

where r_{A} is the radius of the conductor. If r_{o} is the outside diameter of conductor B and r_{i} is its inside diameter, then its cross-sectional area is $\pi\left(r_{o}{ }^{2}-r_{i}^{2}\right)$, and its resistance is

$$
R_{B}=\frac{\rho L}{\pi\left(r_{o}^{2}-r_{i}^{2}\right)} .
$$

The ratio is

$$
\frac{R_{A}}{R_{B}}=\frac{r_{o}^{2}-r_{i}^{2}}{r_{A}^{2}}=\frac{(1.0 \mathrm{~mm})^{2}-(0.50 \mathrm{~mm})^{2}}{(0.50 \mathrm{~mm})^{2}}=3.0 .
$$

