25. The resistance at operating temperature T is $R=V / i=2.9 \mathrm{~V} / 0.30 \mathrm{~A}=9.67 \Omega$. Thus, from $R-R_{0}=R_{0} \alpha\left(T-T_{0}\right)$, we find

$$
T=T_{0}+\frac{1}{\alpha}\left(\frac{R}{R_{0}}-1\right)=20^{\circ} \mathrm{C}+\left(\frac{1}{4.5 \times 10^{-3} / \mathrm{K}}\right)\left(\frac{9.67 \Omega}{1.1 \Omega}-1\right)=1.9 \times 10^{3}{ }^{\circ} \mathrm{C} .
$$

Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, the value of α used in this calculation is not inconsistent with the other units involved. Table $26-1$ has been used.

