19. Let i_{1} be the current in R_{1} and take it to be positive if it is to the right. Let i_{2} be the current in R_{2} and take it to be positive if it is upward.
(a) When the loop rule is applied to the lower loop, the result is

$$
\varepsilon_{2}-i_{1} R_{1}=0
$$

The equation yields

$$
i_{1}=\frac{\varepsilon_{2}}{R_{1}}=\frac{5.0 \mathrm{~V}}{100 \Omega}=0.050 \mathrm{~A} .
$$

(b) When it is applied to the upper loop, the result is

$$
\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-i_{2} R_{2}=0 .
$$

The equation yields

$$
i_{2}=\frac{\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}}{R_{2}}=\frac{6.0 \mathrm{~V}-5.0 \mathrm{~V}-4.0 \mathrm{~V}}{50 \Omega}=-0.060 \mathrm{~A}
$$

or $\left|i_{2}\right|=0.060 \mathrm{~A}$. The negative sign indicates that the current in R_{2} is actually downward.
(c) If V_{b} is the potential at point b, then the potential at point a is $V_{a}=V_{b}+\varepsilon_{3}+\varepsilon_{2}$, so V_{a} $-V_{b}=\varepsilon_{3}+\varepsilon_{2}=4.0 \mathrm{~V}+5.0 \mathrm{~V}=9.0 \mathrm{~V}$.

