27. (a) We note that the R_{1} resistors occur in series pairs, contributing net resistance $2 R_{1}$ in each branch where they appear. Since $\varepsilon_{2}=\varepsilon_{3}$ and $R_{2}=2 R_{1}$, from symmetry we know that the currents through ε_{2} and ε_{3} are the same: $i_{2}=i_{3}=i$. Therefore, the current through ε_{1} is $i_{1}=2 i$. Then from $V_{b}-V_{a}=\varepsilon_{2}-i R_{2}=\varepsilon_{1}+\left(2 R_{1}\right)(2 i)$ we get

$$
i=\frac{\varepsilon_{2}-\varepsilon_{1}}{4 R_{1}+R_{2}}=\frac{4.0 \mathrm{~V}-2.0 \mathrm{~V}}{4(1.0 \Omega)+2.0 \Omega}=0.33 \mathrm{~A} .
$$

Therefore, the current through \mathcal{E}_{1} is $i_{1}=2 i=0.67 \mathrm{~A}$.
(b) The direction of i_{1} is downward.
(c) The current through ε_{2} is $i_{2}=0.33 \mathrm{~A}$.
(d) The direction of i_{2} is upward.
(e) From part (a), we have $i_{3}=i_{2}=0.33 \mathrm{~A}$.
(f) The direction of i_{3} is also upward.
(g) $V_{a}-V_{b}=-i R_{2}+\varepsilon_{2}=-(0.333 \mathrm{~A})(2.0 \Omega)+4.0 \mathrm{~V}=3.3 \mathrm{~V}$.

