27. (a) We note that the R_1 resistors occur in series pairs, contributing net resistance $2R_1$ in each branch where they appear. Since $\varepsilon_2 = \varepsilon_3$ and $R_2 = 2R_1$, from symmetry we know that the currents through ε_2 and ε_3 are the same: $i_2 = i_3 = i$. Therefore, the current through ε_1 is $i_1 = 2i$. Then from $V_b - V_a = \varepsilon_2 - iR_2 = \varepsilon_1 + (2R_1)(2i)$ we get

$$i = \frac{\varepsilon_2 - \varepsilon_1}{4R_1 + R_2} = \frac{4.0 \,\mathrm{V} - 2.0 \,\mathrm{V}}{4(1.0 \,\Omega) + 2.0 \,\Omega} = 0.33 \,\mathrm{A}.$$

Therefore, the current through ε_1 is $i_1 = 2i = 0.67$ A.

- (b) The direction of i_1 is downward.
- (c) The current through ε_2 is $i_2 = 0.33$ A.
- (d) The direction of i_2 is upward.
- (e) From part (a), we have $i_3 = i_2 = 0.33$ A.
- (f) The direction of i_3 is also upward.

(g) $V_a - V_b = -iR_2 + \varepsilon_2 = -(0.333 \text{ A})(2.0 \Omega) + 4.0 \text{ V} = 3.3 \text{ V}.$