38. (a) Since $i=\varepsilon /\left(r+R_{\mathrm{ext}}\right)$ and $i_{\max }=\varepsilon / r$, we have $R_{\mathrm{ext}}=R\left(i_{\max } / i-1\right)$ where $r=1.50$ $\mathrm{V} / 1.00 \mathrm{~mA}=1.50 \times 10^{3} \Omega$. Thus,

$$
R_{\mathrm{ext}}=\left(1.5 \times 10^{3} \Omega\right)(1 / 0.100-1)=1.35 \times 10^{4} \Omega .
$$

(b) $R_{\text {ext }}=\left(1.5 \times 10^{3} \Omega\right)(1 / 0.500-1)=1.50 \times 10^{3} \Omega$.
(c) $R_{\text {ext }}=\left(1.5 \times 10^{3} \Omega\right)(1 / 0.900-1)=167 \Omega$.
(d) Since $r=20.0 \Omega+R, R=1.50 \times 10^{3} \Omega-20.0 \Omega=1.48 \times 10^{3} \Omega$.

